Synthesis of water-soluble subphthalocyanines

[1]  D. Woehrle,et al.  Unsymmetrically Substituted Phthalocyanine Derivatives via a Modified Ring Enlargement Reaction of Unsubstituted Subphthalocyanine , 1995 .

[2]  G. Scorrano,et al.  Catalytic Strategies for Sustainable Oxidations in Water , 2008 .

[3]  L. Echegoyen,et al.  Tuning photoinduced energy- and electron-transfer events in subphthalocyanine-phthalocyanine dyads. , 2005, Chemistry.

[4]  T. Torres,et al.  On the mechanism of boron-subphthalocyanine chloride formation , 2007 .

[5]  Henk J. Bolink,et al.  Subphthalocyanines as narrow band red-light emitting materials , 2007 .

[6]  M. Yáñez,et al.  Accelerating charge transfer in a triphenylamine-subphthalocyanine donor-acceptor system. , 2008, Chemical Communications.

[7]  Roger Guilard,et al.  The porphyrin handbook , 2002 .

[8]  T. Torres,et al.  Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. , 2007, Chemical communications.

[9]  T. Torres,et al.  Highly Efficient Synthesis of Chloro- and Phenoxy-Substituted Subphthalocyanines , 2003 .

[10]  H. Ueno,et al.  Quenching of singlet photoexcited state of water soluble phthalocyanines and porphyrins by viologens interacting electrostatically , 2005 .

[11]  T. Torres,et al.  Subphthalocyanines: Preparation, Reactivity and Physical Properties , 1996 .

[12]  T. Torres From subphthalocyanines to subporphyrins. , 2006, Angewandte Chemie.

[13]  R. Iglesias,et al.  Subphthalocyanine-fused dimers and trimers: synthetic, electrochemical, and theoretical studies. , 2007, The Journal of organic chemistry.

[14]  D. Guldi,et al.  Photoinduced charge-transfer states in subphthalocyanine-ferrocene dyads. , 2006, Journal of the American Chemical Society.

[15]  N. Baziakina,et al.  Efficient oxidations and photooxidations with molecular oxygen using metal phthalocyanines as catalysts and photocatalysts , 2004 .

[16]  A. Tedesco,et al.  Synthesis, Photophysical and Photochemical Aspects of Phthalocyanines for Photodynamic Therapy , 2003 .

[17]  Barry P Rand,et al.  Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells. , 2006, Journal of the American Chemical Society.

[18]  J. Zyss,et al.  Structural modulation of the dipolar-octupolar contributions to the NLO response in subphthalocyanines. , 2005, The journal of physical chemistry. B.

[19]  D. Wöhrle,et al.  Synthesis of charged triazatetrabenzcorroles, phthalocyanines and tetrapyridylporphyrin, and their activities in the co-sensitized photooxidation of 2-mercaptoethanol , 2009 .

[20]  T. Torres,et al.  Phthalocyanines: from outstanding electronic properties to emerging applications. , 2008, Chemical record.

[21]  S. Ogura,et al.  Development of phthalocyanines for photodynamic therapy , 2006 .

[22]  P. Heremans,et al.  Electro‐Optical Study of Subphthalocyanine in a Bilayer Organic Solar Cell , 2007 .

[23]  Tomás Torres,et al.  Subphthalocyanines: singular nonplanar aromatic compounds-synthesis, reactivity, and physical properties. , 2002, Chemical reviews.

[24]  K. Ishii,et al.  Synthesis, Spectroscopy, and Molecular Orbital Calculations of Subazaporphyrins, Subphthalocyanines, Subnaphthalocyanines, and Compounds Derived Therefrom by Ring Expansion1 , 1999 .

[25]  R. Iglesias,et al.  Subphthalocyanine-dehydro[18]annulenes. , 2007, Organic letters.

[26]  M. Miranda Photosensitization by drugs , 2001 .

[27]  T. Torres,et al.  Inclusion of C60 fullerene in a M3L2 subphthalocyanine cage. , 2004, Chemical communications.