Probabilistic two-dimensional water-column and seabed inversion with self-adapting parameterizations.

This paper develops a probabilistic two-dimensional (2D) inversion for geoacoustic seabed and water-column parameters in a strongly range-dependent environment. Range-dependent environments in shelf and shelf-break regions are of increasing importance to the acoustical-oceanography community, and recent advances in nonlinear inverse theory and sampling methods are applied here for efficient probabilistic range-dependent inversion. The 2D seabed and water column are parameterized using highly efficient, self-adapting irregular grids which intrinsically match the local resolving power of the data and provide parsimonious solutions requiring few parameters to capture complex environments. The self-adapting parameterization is achieved by implementing the irregular grid as a trans-dimensional hierarchical Bayesian model with an unknown number of nodes which is sampled with the Metropolis-Hastings-Green algorithm. To improve sampling, population Monte Carlo is applied with a large number of interacting parallel Markov chains with adaptive proposal distributions. The inversion is applied to simulated data for a vertical-line array and several source locations to several kilometers range. Complex acoustic-pressure fields are computed using a parabolic equation model and results are considered in terms of 2D ensemble parameter estimates and credibility intervals.

[1]  N. Chapman,et al.  Bayesian geoacoustic inversion in a dynamic shallow water environment. , 2008, The Journal of the Acoustical Society of America.

[2]  S. Dosso,et al.  Bayesian evidence computation for model selection in non-linear geoacoustic inference problems. , 2010, The Journal of the Acoustical Society of America.

[3]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[4]  Ajay Jasra,et al.  Population-Based Reversible Jump Markov Chain Monte Carlo , 2007, 0711.0186.

[5]  Peter Gerstoft,et al.  Range-dependent geoacoustic inversion: results from the Inversion Techniques Workshop , 2003 .

[6]  Peter Gerstoft,et al.  Phenomenological and global optimization inversion , 2003 .

[7]  Peter Gerstoft,et al.  Sequential geoacoustic inversion at the continental shelfbreak. , 2012, The Journal of the Acoustical Society of America.

[8]  Peter Gerstoft,et al.  Bayesian model selection applied to self-noise geoacoustic inversion , 2004 .

[9]  J. Goff,et al.  Geoacoustic Inversion for the New Jersey Shelf: 3-D Sediment Model , 2010, IEEE Journal of Oceanic Engineering.

[10]  S. Dosso,et al.  Data Uncertainty Estimation in Matched-Field Geoacoustic Inversion , 2006, IEEE Journal of Oceanic Engineering.

[11]  Jan Dettmer,et al.  Sequential trans-dimensional Monte Carlo for range-dependent geoacoustic inversion. , 2011, The Journal of the Acoustical Society of America.

[12]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[13]  M. Sambridge,et al.  Seismic tomography with the reversible jump algorithm , 2009 .

[14]  N. Chapman,et al.  Benchmarking geoacoustic inversion methods for range-dependent waveguides , 2003 .

[15]  C. Holland,et al.  Model selection and Bayesian inference for high-resolution seabed reflection inversion. , 2009, The Journal of the Acoustical Society of America.

[16]  Jan Dettmer,et al.  Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains. , 2012, The Journal of the Acoustical Society of America.

[17]  Peter Gerstoft,et al.  Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions , 1994 .

[18]  S. Brooks,et al.  Classical model selection via simulated annealing , 2003, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[19]  Peter Gerstoft,et al.  Effect of ocean sound speed uncertainty on matched-field geoacoustic inversion. , 2008, The Journal of the Acoustical Society of America.

[20]  S. Dosso Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach. , 2002, The Journal of the Acoustical Society of America.

[21]  Jan Dettmer,et al.  Trans-dimensional geoacoustic inversion. , 2010, The Journal of the Acoustical Society of America.

[22]  Stan E. Dosso,et al.  Bayesian matched-field geoacoustic inversion , 2007 .

[23]  M. Ballard,et al.  Inversion for range-dependent water column sound speed profiles on the New Jersey shelf using a linearized perturbative method. , 2010, The Journal of the Acoustical Society of America.

[24]  Refik Soyer,et al.  Bayesian Methods for Nonlinear Classification and Regression , 2004, Technometrics.

[25]  N. Chapman,et al.  Parameter Estimate Biases in Geoacoustic Inversion From Neglected Range Dependence , 2008, IEEE Journal of Oceanic Engineering.

[26]  C. Holland,et al.  In situ sediment dispersion estimates in the presence of discrete layers and gradients. , 2013, The Journal of the Acoustical Society of America.

[27]  M. Sambridge,et al.  Geophysical parametrization and interpolation of irregular data using natural neighbours , 1995 .

[28]  Malcolm Sambridge,et al.  Parallel tempering for strongly nonlinear geoacoustic inversion. , 2012, The Journal of the Acoustical Society of America.

[29]  M. Sambridge,et al.  Trans-dimensional inverse problems, model comparison and the evidence , 2006 .

[30]  D. Chapman,et al.  The effects of ignored seabed variability in geoacoustic inversion. , 2003, The Journal of the Acoustical Society of America.

[31]  Alberto Malinverno,et al.  A Bayesian criterion for simplicity in inverse problem parametrization , 2000 .

[32]  M. Sambridge,et al.  Irregular interface parametrization in 3-D wide-angle seismic traveltime tomography , 2003 .

[33]  Gordon R. Ebbeson,et al.  PECan: A Canadian Parabolic Equation Model for Underwater Sound Propagation , .

[34]  Peter Gerstoft,et al.  Uncertainty analysis in matched-field geoacoustic inversions. , 2006, The Journal of the Acoustical Society of America.

[35]  Stan E. Dosso,et al.  Estimation of ocean-bottom properties by matched-field inversion of acoustic field data , 1993 .

[36]  Stan E. Dosso,et al.  Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models , 2012 .

[37]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[38]  Henrik Schmidt,et al.  Nonlinear inversion for ocean‐bottom properties , 1992 .

[39]  N. Chapman,et al.  The impact of ocean sound speed variability on the uncertainty of geoacoustic parameter estimates. , 2009, The Journal of the Acoustical Society of America.

[40]  Jean-Pierre Hermand,et al.  Sequential Bayesian geoacoustic inversion for mobile and compact source-receiver configuration. , 2012, The Journal of the Acoustical Society of America.