Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology

Diffusion-weighted magnetic resonance imaging (DWI) provides functional information and can be used for the detection and characterization of pathologic processes, including malignant tumors. The recently introduced concept of “diffusion-weighted whole-body imaging with background body signal suppression” (DWIBS) now allows acquisition of volumetric diffusion-weighted images of the entire body. This new concept has unique features different from conventional DWI and may play an important role in whole-body oncological imaging. This review describes and illustrates the basics of DWI, the features of DWIBS, and its potential applications in oncology.

[1]  C. Jaffe Measures of response: RECIST, WHO, and new alternatives. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  Takeshi Yoshikawa,et al.  ADC measurement of abdominal organs and lesions using parallel imaging technique. , 2006, AJR. American journal of roentgenology.

[3]  Mukesh G Harisinghani,et al.  Current concepts in lymph node imaging. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[4]  H. Schild,et al.  Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 Tesla , 2007, European Radiology.

[5]  C. Meyer,et al.  Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Takahara,et al.  [Influence of respiratory motion in body diffusion weighted imaging under free breathing (examination of a moving phantom)]. , 2005, Nihon Hoshasen Gijutsu Gakkai zasshi.

[7]  R. Luypaert,et al.  Imaging tutorial: differential diagnosis of bright lesions on diffusion-weighted MR images. , 2003, Radiographics : a review publication of the Radiological Society of North America, Inc.

[8]  D. Collins,et al.  Diffusion-weighted MRI in the body: applications and challenges in oncology. , 2007, AJR. American journal of roentgenology.

[9]  Frederik De Keyzer,et al.  Extracranial applications of diffusion-weighted magnetic resonance imaging , 2007, European Radiology.

[10]  R. Bammer Basic principles of diffusion-weighted imaging. , 2003, European journal of radiology.

[11]  Benjamin M Yeh,et al.  Parallel imaging and diffusion tensor imaging for diffusion-weighted MRI of the liver: preliminary experience in healthy volunteers. , 2004, AJR. American journal of roentgenology.

[12]  I. Narabayashi,et al.  2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience , 2007, Annals of nuclear medicine.

[13]  Claudia Orellana,et al.  Global action against cancer , 2003 .

[14]  J. Gurney,et al.  Diffusion‐weighted MRI (DWI) in the oncology patient: Value of breathhold DWI compared to unenhanced and gadolinium‐enhanced MRI , 2007, Journal of magnetic resonance imaging : JMRI.

[15]  D. LeBihan,et al.  Molecular diffusion nuclear magnetic resonance imaging. , 1991 .

[16]  Sukru Mehmet Erturk,et al.  High-B-value diffusion-weighted MRI in colorectal cancer. , 2006, AJR. American journal of roentgenology.

[17]  T. Ichikawa,et al.  Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. , 1998, AJR. American journal of roentgenology.

[18]  Y. Tsushima,et al.  Body diffusion-weighted MR imaging using high b-value for malignant tumor screening: usefulness and necessity of referring to T2-weighted images and creating fusion images. , 2007, Academic radiology.

[19]  G. Johnson,et al.  Fat suppression in MR imaging: techniques and pitfalls. , 1999, Radiographics : a review publication of the Radiological Society of North America, Inc.

[20]  James F Glockner,et al.  Parallel MR imaging: a user's guide. , 2005, Radiographics : a review publication of the Radiological Society of North America, Inc.

[21]  W. Weber Positron emission tomography as an imaging biomarker. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  B. Ross,et al.  Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  R R Edelman,et al.  Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. , 1994, Radiology.

[24]  T. Turkington,et al.  Clinical applications of PET in oncology. , 2004, Radiology.

[25]  R R Edelman,et al.  In vivo measurement of water diffusion in the human heart , 1994, Magnetic resonance in medicine.

[26]  Bradford A Moffat,et al.  Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Ichikawa,et al.  Diffusion-weighted MR imaging with single-shot echo-planar imaging in the upper abdomen: preliminary clinical experience in 61 patients , 1999, Abdominal Imaging.

[28]  M. Morris,et al.  Imaging therapeutic response in human bone marrow using rapid whole‐body MRI , 2004, Magnetic resonance in medicine.

[29]  Zheng-yu Jin,et al.  Whole‐body diffusion‐weighted imaging: Technical improvement and preliminary results , 2007, Journal of magnetic resonance imaging : JMRI.

[30]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[31]  D. Le Bihan Molecular diffusion nuclear magnetic resonance imaging. , 1991, Magnetic resonance quarterly.

[32]  K. Togashi,et al.  The utility of diffusion-weighted MR imaging for differentiating uterine sarcomas from benign leiomyomas , 2007, European Radiology.

[33]  C. Kuhl,et al.  Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. , 2005, Radiology.

[34]  B. Siewert,et al.  Abdominal diffusion mapping with use of a whole-body echo-planar system. , 1994, Radiology.

[35]  K. Togashi,et al.  Diffusion‐weighted MR imaging of uterine endometrial cancer , 2007, Journal of magnetic resonance imaging : JMRI.

[36]  J. Pekar,et al.  Echo-planar imaging of intravoxel incoherent motion. , 1990, Radiology.

[37]  A. Laghi,et al.  Oral Contrast Agents for Magnetic Resonance Imaging of the Bowel , 2002, Topics in magnetic resonance imaging : TMRI.

[38]  N. Moriyama,et al.  Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique. , 2004, Japanese journal of clinical oncology.

[39]  S. Nawano,et al.  Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. , 2006, Radiology.

[40]  Hiroshi Iino,et al.  High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. , 2007, AJR. American journal of roentgenology.

[41]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[42]  I sabel Mortara,et al.  International Union against Cancer , 1938, Nature.

[43]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[44]  T. Takahara,et al.  Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. , 2004, Radiation medicine.

[45]  S. Nawano,et al.  The effect of simultaneous use of respiratory triggering in diffusion-weighted imaging of the liver. , 2006, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[46]  A. Darzi,et al.  Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis. , 2006, The Lancet Oncology.

[47]  Daniel P Barboriak,et al.  Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. , 2006, Radiology.

[48]  Timothy D Johnson,et al.  A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone. , 2007, Neoplasia.