Scale transition and enforcement of RVE boundary conditions in second‐order computational homogenization
暂无分享,去创建一个
[1] N. Fleck,et al. FINITE ELEMENTS FOR MATERIALS WITH STRAIN GRADIENT EFFECTS , 1999 .
[2] Ted Belytschko,et al. Arbitrary discontinuities in finite elements , 2001 .
[3] F. Feyel. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .
[4] M. Ainsworth. Essential boundary conditions and multi-point constraints in finite element analysis , 2001 .
[5] Frédéric Feyel,et al. Multiscale FE2 elastoviscoplastic analysis of composite structures , 1999 .
[6] C. Miehe,et al. Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .
[7] V. Kouznetsova,et al. Size of a representative volume element in a second-order computational homogenization framework , 2004 .
[8] R. Toupin. Elastic materials with couple-stresses , 1962 .
[9] V Varvara Kouznetsova,et al. Computational homogenization for the multi-scale analysis of multi-phase materials , 2002 .
[10] R. D. Mindlin. Second gradient of strain and surface-tension in linear elasticity , 1965 .
[11] J. Hudson. Overall properties of heterogeneous material , 1991 .
[12] S. Nemat-Nasser,et al. Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .
[13] 小林 昭一. "MICROMECHANICS: Overall Properties of Heterogeneous Materials", S.Nemat-Nasser & M.Hori(著), (1993年, North-Holland発行, B5判, 687ページ, DFL.260.00) , 1995 .