Design of robust fractional order PI for FOPDT systems via set inversion

This paper presents a new design approach of a fractional order PI controller for uncertain system with delay. The method uses the set inversion via interval analysis approach to determine the three parameters of the controller in accordance with different frequency specifications. When applied to uncertain delay system, the method computes the interval of each parameter providing the desired performances. Some numerical examples illustrate the effectiveness of the proposed approach in the case of an uncertain first order plus dead time system.

[1]  Suman Saha,et al.  On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes , 2011, ISA transactions.

[2]  M. Amairi,et al.  Fractional PI design for time delay systems based on min-max optimization , 2014, ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014.

[3]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[4]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[5]  Ivo Petráš,et al.  FRACTIONAL – ORDER FEEDBACK CONTROL OF A DC MOTOR , 2009 .

[6]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[7]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[8]  M. N. Abdelkrim,et al.  Design of fractional PI controller with guaranteed time and frequency-domain performances , 2013, 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13).

[9]  K. Åström,et al.  Revisiting the Ziegler-Nichols step response method for PID control , 2004 .

[10]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[11]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[12]  Mohamed Aoun,et al.  Bode shaping-based design methods of a fractional order PID controller for uncertain systems , 2015 .

[13]  Vicente Feliú Batlle,et al.  Design of a class of fractional controllers from frequency specifications with guaranteed time domain behavior , 2010, Comput. Math. Appl..

[14]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[15]  M. N. Abdelkrim,et al.  Design of a robust fractional PID controller for a second order plus dead time system , 2013, 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13).

[16]  Ivo Petraÿs,et al.  FRACTIONAL - ORDER FEEDBACK CONTROL OF A DC MOTOR , 2009 .

[17]  Ivo Petráš,et al.  Tuning and implementation methods for fractional-order controllers , 2012 .

[18]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[19]  DasSwagatam,et al.  Design of fractional-order PIλDµ controllers with an improved differential evolution , 2009 .

[20]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[21]  Christofer Toumazou,et al.  An Efficient Implementation of the SIVIA Algorithm in a High-Level Numerical Programming Language , 2012, Reliab. Comput..

[22]  Ajith Abraham,et al.  Design of fractional-order PIlambdaDµ controllers with an improved differential evolution , 2009, Eng. Appl. Artif. Intell..

[23]  A. Charef,et al.  Analogue realisation of fractional-order integrator, differentiator and fractional PI/spl lambda/D/spl mu/ controller , 2006 .

[24]  Y. Chen,et al.  Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers , 2008 .

[25]  YangQuan Chen,et al.  Fractional order PID control of a DC-motor with elastic shaft: a case study , 2006, 2006 American Control Conference.