Exact and Approximate Distances in Graphs - A Survey

We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.

[1]  Peter van Emde Boas,et al.  Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space , 1977, Inf. Process. Lett..

[2]  Noga Alon,et al.  Witnesses for Boolean matrix multiplication and for shortest paths , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[3]  Michael L. Fredman,et al.  Trans-Dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths , 1994, J. Comput. Syst. Sci..

[4]  Lenore Cowen,et al.  Near-Linear Time Construction of Sparse Neighborhood Covers , 1999, SIAM J. Comput..

[5]  Torben Hagerup,et al.  Sorting and Searching on the Word RAM , 1998, STACS.

[6]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[7]  Edith Cohen,et al.  All-pairs small-stretch paths , 1997, SODA '97.

[8]  Andrew V. Goldberg,et al.  Scaling algorithms for the shortest paths problem , 1995, SODA '93.

[9]  Giuseppe F. Italiano,et al.  Fully dynamic transitive closure: breaking through the O(n/sup 2/) barrier , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[10]  Zvi Galil,et al.  All Pairs Shortest Distances for Graphs with Small Integer Length Edges , 1997, Inf. Comput..

[11]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[12]  Noga Alon,et al.  On the Exponent of the All Pairs Shortest Path Problem , 1991, J. Comput. Syst. Sci..

[13]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.

[14]  Philip N. Klein,et al.  A Randomized Parallel Algorithm for Single-Source Shortest Paths , 1997, J. Algorithms.

[15]  Mikkel Thorup,et al.  Faster deterministic sorting and priority queues in linear space , 1998, SODA '98.

[16]  Robert E. Tarjan,et al.  Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel computation , 1988, CACM.

[17]  Victor Y. Pan,et al.  Fast Rectangular Matrix Multiplication and Applications , 1998, J. Complex..

[18]  Michael L. Fredman,et al.  Surpassing the Information Theoretic Bound with Fusion Trees , 1993, J. Comput. Syst. Sci..

[19]  Edith Cohen Using Selective Path-Doubling for Parallel Shortest-Path Computations , 1997, J. Algorithms.

[20]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[21]  Zvi Galil,et al.  Witnesses for Boolean Matrix Multiplication and for Transitive Closure , 1993, J. Complex..

[22]  Yijie Han,et al.  Improved fast integer sorting in linear space , 2001, SODA '01.

[23]  Piotr Indyk,et al.  Fast estimation of diameter and shortest paths (without matrix multiplication) , 1996, SODA '96.

[24]  Rajeev Raman,et al.  Priority Queues: Small, Monotone and Trans-dichotomous , 1996, ESA.

[25]  Gideon Yuval,et al.  An Algorithm for Finding All Shortest Paths Using N^(2.81) Infinite-Precision Multiplications , 1976, Inf. Process. Lett..

[26]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[27]  Baruch Awerbuch,et al.  Complexity of network synchronization , 1985, JACM.

[28]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[29]  Andrew V. Goldberg,et al.  Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.

[30]  David R. Karger,et al.  Finding the Hidden Path: Time Bounds for All-Pairs Shortest Paths , 1993, SIAM J. Comput..

[31]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[32]  Rajeev Raman,et al.  Recent results on the single-source shortest paths problem , 1997, SIGA.

[33]  Mikkel Thorup,et al.  Compact oracles for reachability and approximate distances in planar digraphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[34]  Don Coppersmith,et al.  Rectangular Matrix Multiplication Revisited , 1997, J. Complex..

[35]  Mikkel Thorup,et al.  On RAM priority queues , 1996, SODA '96.

[36]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[37]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[38]  Michael L. Fredman,et al.  New Bounds on the Complexity of the Shortest Path Problem , 1976, SIAM J. Comput..

[39]  Tadao Takaoka,et al.  A New Upper Bound on the Complexity of the All Pairs Shortest Path Problem , 1991, Inf. Process. Lett..

[40]  Mikkel Thorup,et al.  Compact routing schemes , 2001, SPAA '01.

[41]  Polylog-time and near-linear work approximation scheme for undirected shortest paths , 2000, JACM.

[42]  Mikkel Thorup Floats, Integers, and Single Source Shortest Paths , 2000, J. Algorithms.

[43]  Harold N. Gabow Scaling Algorithms for Network Problems , 1985, J. Comput. Syst. Sci..

[44]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[45]  Michael Elkin,et al.  Computing almost shortest paths , 2001, TALG.

[46]  Raimund Seidel,et al.  On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs , 1995, J. Comput. Syst. Sci..

[47]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[48]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[49]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[50]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[51]  Uri Zwick,et al.  All pairs shortest paths in weighted directed graphs-exact and almost exact algorithms , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[52]  David Peleg,et al.  Approximating k-Spanner Problems for k>2 , 2001, IPCO.

[53]  Uri Zwick,et al.  All pairs lightest shortest paths , 1999, STOC '99.

[54]  Valerie King,et al.  Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[55]  Kurt Mehlhorn,et al.  Faster algorithms for the shortest path problem , 1990, JACM.

[56]  Andrew V. Goldberg,et al.  Buckets, heaps, lists, and monotone priority queues , 1997, SODA '97.

[57]  Edith Cohen Fast Algorithms for Constructing t-Spanners and Paths with Stretch t , 1998, SIAM J. Comput..

[58]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[59]  Tadao Takaoka,et al.  Subcubic Cost Algorithms for the All Pairs Shortest Path Problem , 1998, Algorithmica.

[60]  Uri Zwick,et al.  All pairs shortest paths in undirected graphs with integer weights , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[61]  V. Strassen Gaussian elimination is not optimal , 1969 .

[62]  Torben Hagerup,et al.  Improved Shortest Paths on the Word RAM , 2000, ICALP.

[63]  Uri Zwick,et al.  All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..

[64]  Guy Kortsarz,et al.  Generating Sparse 2-Spanners , 1994, J. Algorithms.

[65]  Zvi Galil,et al.  All Pairs Shortest Paths for Graphs with Small Integer Length Edges , 1997, J. Comput. Syst. Sci..

[66]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[67]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[68]  Mike Paterson,et al.  Complexity of Monotone Networks for Boolean Matrix Product , 1974, Theor. Comput. Sci..

[69]  Lenore Cowen,et al.  Compact routing with minimum stretch , 1999, SODA '99.

[70]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[71]  David Peleg,et al.  (1 + εΒ)-spanner constructions for general graphs , 2001, STOC '01.

[72]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[73]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.