A Labeling Approach to Incremental Cycle Detection

In the \emph{incremental cycle detection} problem arcs are added to a directed acyclic graph and the algorithm has to report if the new arc closes a cycle. One seeks to minimize the total time to process the entire sequence of arc insertions, or until a cycle appears. In a recent breakthrough, Bender, Fineman, Gilbert and Tarjan \cite{BeFiGiTa11} presented two different algorithms, with time complexity $O(n^2 \log n)$ and $O(m \cdot \min \{m^{1/2}, n^{2/3} \})$, respectively. In this paper we introduce a new technique for incremental cycle detection that allows us to obtain both bounds (up to a logarithmic factor). Furthermore, our approach seems more amiable for distributed implementation.

[1]  Bowen Alpern,et al.  Incremental evaluation of computational circuits , 1990, SODA '90.

[2]  Robert E. Tarjan,et al.  A New Approach to Incremental Cycle Detection and Related Problems , 2011, ACM Trans. Algorithms.

[3]  Lubos Brim,et al.  From Distributed Memory Cycle Detection to Parallel LTL Model Checking , 2005, FMICS.

[4]  Alberto Marchetti-Spaccamela,et al.  Maintaining a Topological Order Under Edge Insertions , 1996, Inf. Process. Lett..

[5]  Tobias Friedrich,et al.  Average-case analysis of incremental topological ordering , 2010, Discret. Appl. Math..

[6]  Ulrich Meyer,et al.  An O(n2.75) algorithm for incremental topological ordering , 2008, TALG.

[7]  Norman,et al.  Structural Models: An Introduction to the Theory of Directed Graphs. , 1966 .

[8]  FriedrichTobias,et al.  An O(n2.75) algorithm for incremental topological ordering , 2008 .

[9]  Kun-Mao Chao,et al.  A tight analysis of the Katriel-Bodlaender algorithm for online topological ordering , 2007, Theor. Comput. Sci..

[10]  Paul H. J. Kelly,et al.  A dynamic topological sort algorithm for directed acyclic graphs , 2007, ACM J. Exp. Algorithmics.

[11]  Jayme Luiz Szwarcfiter,et al.  A Structured Program to Generate all Topological Sorting Arrangements , 1974, Information Processing Letters.

[12]  Hans L. Bodlaender,et al.  Online topological ordering , 2005, SODA '05.

[13]  Edith Cohen,et al.  Size-Estimation Framework with Applications to Transitive Closure and Reachability , 1997, J. Comput. Syst. Sci..

[14]  Robert E. Tarjan,et al.  Incremental Cycle Detection, Topological Ordering, and Strong Component Maintenance , 2011, ACM Trans. Algorithms.

[15]  Lawrence Rauchwerger,et al.  Identifying Strongly Connected Components in Parallel , 2000, PPSC.

[16]  Telikepalli Kavitha,et al.  Faster Algorithms for Online Topological Ordering , 2007, ArXiv.

[17]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[18]  Michael A. Bender,et al.  A new approach to incremental topological ordering , 2009, SODA.