THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION

We show that the porous medium equation has a gradient flow structure which is both physically and mathematically natural. In order to convince the reader that it is mathematically natural, we show that the time asymptotic behavior can be easily understood in this framework. We use the intuition and the calculus of Riemannian geometry to quantify this asymptotic behavior.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  R. E. Pattle DIFFUSION FROM AN INSTANTANEOUS POINT SOURCE WITH A CONCENTRATION-DEPENDENT COEFFICIENT , 1959 .

[3]  H. McKean Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas , 1966 .

[4]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[5]  S. Kullback,et al.  A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[6]  Solomon Kullback,et al.  Correction to A Lower Bound for Discrimination Information in Terms of Variation , 1970, IEEE Trans. Inf. Theory.

[7]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[8]  Hiroshi Tanaka Probabilistic treatment of the Boltzmann equation of Maxwellian molecules , 1978 .

[9]  Avner Friedman,et al.  Continuity of the density of a gas flow in a porous medium , 1979 .

[10]  Avner Friedman,et al.  The asymptotic behavior of gas in an -dimensional porous medium , 1980 .

[11]  P. Lions,et al.  Viscosity solutions of Hamilton-Jacobi equations , 1983 .

[12]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[13]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[14]  William I. Newman,et al.  A Lyapunov functional for the evolution of solutions to the porous medium equation to self‐similarity. I , 1984 .

[15]  James Ralston,et al.  A Lyapunov functional for the evolution of solutions to the porous medium equation to self‐similarity. II , 1984 .

[16]  A. I. Shnirel'man ON THE GEOMETRY OF THE GROUP OF DIFFEOMORPHISMS AND THE DYNAMICS OF AN IDEAL INCOMPRESSIBLE FLUID , 1987 .

[17]  D. Stroock,et al.  Logarithmic Sobolev inequalities and stochastic Ising models , 1987 .

[18]  J. Vázquez,et al.  Fundamental Solutions and Asymptotic Behaviour for the p-Laplacian Equation , 1988 .

[19]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[20]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[21]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[22]  Wilfrid Gangbo An elementary proof of the polar factorization of vector-valued functions , 1994 .

[23]  W. Gangbo,et al.  Optimal maps in Monge's mass transport problem , 1995 .

[24]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[25]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[26]  Giuseppe Toscani,et al.  The theory of the nonlinear Boltzmann equation for Maxwell molecules in Fourier representation , 1996 .

[27]  Felix Otto,et al.  Doubly Degenerate Diffusion Equations as Steepest Descent , 1996 .

[28]  Felix Otto,et al.  Small surface energy, coarse-graining, and selection of microstructure , 1997 .

[29]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[30]  L. Evans Partial Differential Equations and Monge-Kantorovich Mass Transfer , 1997 .

[31]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[32]  Giuseppe Toscani,et al.  Exponential convergence toward equilibrium for homogeneous Fokker–Planck‐type equations , 1998 .

[33]  Felix Otto,et al.  Dynamics of Labyrinthine Pattern Formation in Magnetic Fluids: A Mean‐Field Theory , 1998 .

[34]  Y. Brenier Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations , 1999 .

[35]  L. Evans,et al.  Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .

[36]  Giuseppe Toscani,et al.  Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation , 1999 .

[37]  J. Dolbeault,et al.  Generalized Sobolev Inequalities and Asymptotic Behaviour in Fast Diffusion and Porous Medium Problems , 1999 .

[38]  J. A. Carrillo,et al.  Asymptotic L1-decay of solutions of the porous medium equation to self-similarity , 2000 .