A switched‐capacitor skew‐tent map implementation for random number generation

Summary Piecewise linear one-dimensional maps have been proposed as the basis for low-power analog and mixed-signal true random number generators (TRNGs). Recent research has moved towards conceiving maps that operate robustly under the consideration of parameter variations. In this paper, we introduce an oscillator circuit mapping a low-complexity map known as the skew-tent. This oscillator is employed as the basis for a TRNG scheme. Simulation results in TSMC 0.18 μm validate the chaotic oscillator and the randomness of the TRNG scheme is verified with the NIST test suite 800-22. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  Gunhan Dundar,et al.  A new dual entropy core true random number generator , 2013, 2013 8th International Conference on Electrical and Electronics Engineering (ELECO).

[2]  L. Kocarev,et al.  Chaos-based random number generators. Part II: practical realization , 2001 .

[3]  Ali Emre Pusane,et al.  A novel design method for discrete time chaos based true random number generators , 2014, Integr..

[4]  L. Kocarev,et al.  Chaos-based random number generators-part I: analysis [cryptography] , 2001 .

[5]  R. Rovatti,et al.  Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos , 2005 .

[6]  L. H. A. Monteiro,et al.  Spectral properties of chaotic signals generated by the skew tent map , 2010, Signal Process..

[7]  Ángel Rodríguez-Vázquez,et al.  SWITCHED-CAPACITOR BROADBAND NOISE GENERATOR FOR CMOS VLSI , 1991 .

[8]  Minoru Etoh Next Generation Mobile Systems 3G and Beyond: Etoh/Next Generation Mobile Systems 3G and Beyond , 2005 .

[9]  Tommaso Addabbo,et al.  Invariant Measures of Tunable Chaotic Sources: Robustness Analysis and Efficient Estimation , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Ahmad Beirami,et al.  A Framework for Investigating the Performance of Chaotic-Map Truly Random Number Generators , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Á. Rodríguez-Vázquez,et al.  Chaos from switched-capacitor circuits: Discrete maps , 1987, Proceedings of the IEEE.

[12]  Manuel Delgado-Restituto,et al.  CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit , 1993 .

[13]  A. Beirami,et al.  Discrete-time chaotic-map truly random number generators: design, implementation, and variability analysis of the zigzag map , 2012, 1206.1039.

[14]  Yuan-Ting Zhang,et al.  A design proposal of security architecture for medical body sensor networks , 2006, International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06).

[15]  Manuel Delgado-Restituto,et al.  Trade-Offs in the Design of CMOS Comparators , 2002 .

[16]  Belén Pérez-Verdú,et al.  Chaos via a piecewise-linear switched-capacitor circuit , 1987 .

[17]  Massimo Alioto,et al.  A feedback strategy to improve the entropy of a chaos-based random bit generator , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Orla Feely Nonlinear dynamics of discrete-time circuits: A survey , 2007, Int. J. Circuit Theory Appl..

[19]  Ángel Rodríguez-Vázquez,et al.  Integrated chaos generators , 2002 .

[20]  Central limit theorem behavior in the skew tent map , 2008 .