Development of Soft-Computing techniques capable of diagnosing Alzheimers Disease in its pre-clinical stage combining MRI and FDG-PET images
暂无分享,去创建一个
Ignacio Rojas | Olga Valenzuela | José Luis Bernier | Fernando Rojas | Francisco M. Ortuño Guzman | Belén San Román | María José Saéz-Lara | I. Rojas | J. Bernier | O. Valenzuela | F. Rojas | M. J. Sáez-Lara | B. S. Román
[1] Daniel Rueckert,et al. Random forest-based similarity measures for multi-modal classification of Alzheimer's disease , 2013, NeuroImage.
[2] Daniel Rueckert,et al. Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease , 2012, NeuroImage.
[3] Peter E. Hart,et al. Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.
[4] Héctor Pomares,et al. Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for PPI classification , 2012, Comput. Biol. Medicine.
[5] C. Jack,et al. Alzheimer's Disease Neuroimaging Initiative , 2008 .
[6] Alberto Maria Segre,et al. Programs for Machine Learning , 1994 .
[7] Ron Kohavi,et al. Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid , 1996, KDD.
[8] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[9] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[10] Daniel Rueckert,et al. Automatic morphometry in Alzheimer's disease and mild cognitive impairment☆☆☆ , 2011, NeuroImage.
[11] Daniel Rueckert,et al. Automated morphological analysis of magnetic resonance brain imaging using spectral analysis , 2008, NeuroImage.
[12] J. L. Hodges,et al. Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .