Adaptive Weak Approximation of Diffusions with Jumps

This work develops adaptive time stepping algorithms for the approximation of a functional of a diffusion with jumps based on a jump augmented Monte Carlo Euler-Maruyama method, which achieve a prescribed precision. The main result is the derivation of new expansions for the time discretization error, with computable leading order term in a posteriori form, which are based on stochastic flows and discrete dual backward functions. Combined with proper estimation of the statistical error, they lead to efficient and accurate computation of global error estimates, extending the results by A. Szepessy, R. Tempone, and G. E. Zouraris [Comm. Pure Appl. Math., 54 (2001), pp. 1169-1214]. Adaptive algorithms for either deterministic or trajectory-dependent time stepping are proposed. Numerical examples show the performance of the proposed error approximations and the adaptive schemes.

[1]  S. Asmussen,et al.  Approximations of small jumps of Lévy processes with a view towards simulation , 2001, Journal of Applied Probability.

[2]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[3]  Raul Tempone,et al.  Adaptive Monte Carlo Algorithms for Stopped Diffusion , 2005 .

[4]  E. Fama Portfolio Analysis in a Stable Paretian Market , 1965 .

[5]  Dawn Hunter Non-parametric calibration of jump–diffusion option pricing models , 2004 .

[6]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[7]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[8]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[9]  R. Tempone,et al.  Adaptive weak approximation of stochastic differential equations , 2001 .

[10]  I. I. Gikhman Theory of stochastic processes , 1974 .

[11]  Desmond J. Higham,et al.  Numerical methods for nonlinear stochastic differential equations with jumps , 2005, Numerische Mathematik.

[12]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[13]  R. Durrett Probability: Theory and Examples , 1993 .

[14]  Rama Cont,et al.  Calibration of Jump-Diffusion Option Pricing Models: A Robust Non-Parametric Approach , 2002 .

[15]  R. Tempone,et al.  Convergence Rates for an Adaptive Dual Weighted Residual Finite Element Algorithm , 2006 .

[16]  Desmond J. Higham,et al.  Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems , 2007 .

[17]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[18]  G. Milstein Numerical Integration of Stochastic Differential Equations , 1994 .

[19]  P. Kloeden,et al.  CONVERGENCE AND STABILITY OF IMPLICIT METHODS FOR JUMP-DIFFUSION SYSTEMS , 2005 .

[20]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[21]  Ivo Babuška,et al.  Adaptive Methods and Error Estimation for Elliptic Problems of Structural Mechanics. , 1983 .

[22]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[23]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[24]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[25]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[26]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[27]  Denis Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996, Monte Carlo Methods Appl..

[28]  P. Protter Stochastic integration and differential equations , 1990 .

[29]  James F. Blowey,et al.  Theory and Numerics of Differential Equations , 2001 .

[30]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[31]  Raul Tempone,et al.  Hyperbolic differential equations and adaptive numerics , 2001 .

[32]  Paul Glasserman,et al.  Numerical solution of jump-diffusion LIBOR market models , 2003, Finance Stochastics.

[33]  Philip Protter,et al.  The Euler scheme for Lévy driven stochastic differential equations , 1997 .

[34]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .

[35]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[36]  R. Seydel Numerical Integration of Stochastic Differential Equations , 2004 .

[37]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[38]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[39]  Raul Tempone,et al.  An Adaptive Algorithm for Ordinary, Stochastic and Partial Differential Equations , 2005 .

[40]  Nicola Bruti-Liberati,et al.  On the Strong Approximation of Jump-Diffusion Processes , 2005 .

[41]  Christoph Schwab,et al.  Fast deterministic pricing of options on Lévy driven assets , 2002 .

[42]  Nicola Bruti-Liberati,et al.  Approximation of jump diffusions in finance and economics , 2007 .

[43]  R. Tempone,et al.  Convergence Rates for Adaptive Weak Approximation of Stochastic Differential Equations , 2005 .

[44]  S. Kotz,et al.  The Theory Of Stochastic Processes I , 1974 .

[45]  Raúl Tempone,et al.  A variational principle for adaptive approximation of ordinary differential equations , 2003, Numerische Mathematik.

[46]  Eckhard Platen,et al.  Time Discrete Taylor Approximations for Itǒ Processes with Jump Component , 1988 .

[47]  Eckhard Platen,et al.  Rate of Weak Convergence of the Euler Approximation for Diffusion Processes with Jumps , 2002, Monte Carlo Methods Appl..

[48]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[49]  Paul Glasserman,et al.  Convergence of a discretization scheme for jump-diffusion processes with state–dependent intensities , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  Daniel W. Stroock,et al.  Lectures on Topics in Stochastic Differential Equations , 1983 .

[51]  D. Talay,et al.  The Euler scheme for stochastic differential equations: error analysis with Malliavin calculus , 1995 .

[52]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[53]  Claes Johnson Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .

[54]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[55]  P. Protter Stochastic integration and differential equations : a new approach , 1990 .

[56]  X. Q. Liu,et al.  Weak Approximations and Extrapolations of Stochastic Differential Equations with Jumps , 2000, SIAM J. Numer. Anal..

[57]  S. Asmussen,et al.  Russian and American put options under exponential phase-type Lévy models , 2004 .

[58]  S. Varadhan,et al.  Diffusion processes with continuous coefficients, I , 1969 .

[59]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[60]  D. Talay,et al.  Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .

[61]  Raúl Tempone,et al.  Convergence rates for adaptive approximation of ordinary differential equations , 2003, Numerische Mathematik.

[62]  Ren Asmussen,et al.  Russian and American put optionsunder exponential phase , 2002 .

[63]  Nicola Bruti-Liberati Weak Numerical Methods for Jump-Diffusion Processes with Applications in Finance , 2005 .

[64]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[65]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[66]  Kiyosi Itô,et al.  Essentials of Stochastic Processes , 2006 .

[67]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[68]  Nicola Bruti-Liberati,et al.  Strong approximations of stochastic differential equations with jumps , 2007 .

[69]  M. Schäl Karatzas, I. und St. E. Shreve: Brownian motion and stochastic calculus. (Graduate Texts in Mathematics, 113) , 1989 .

[70]  G. Maruyama Continuous Markov processes and stochastic equations , 1955 .