Constructions of strict Lyapunov functions for discrete time and hybrid time-varying systems

We provide explicit closed form expressions for strict Lyapunov functions for time-varying discrete time systems. Our Lyapunov functions are expressed in terms of known nonstrict Lyapunov functions for the dynamics and finite sums of persistency of excitation parameters. This provides a discrete time analog of our previous continuous time Lyapunov function constructions. We also construct explicit strict Lyapunov functions for systems satisfying nonstrict discrete time analogs of the conditions from Matrosov’s Theorem. We use our methods to build strict Lyapunov functions for time-varying hybrid systems that contain mixtures of continuous and discrete time evolutions.

[1]  Eduardo Sontag,et al.  Notions of input to output stability , 1999, Systems & Control Letters.

[2]  F. Mazenc,et al.  Further constructions of strict Lyapunov functions for time-varying systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[3]  Pascal Morin,et al.  Design of Homogeneous Time-Varying Stabilizing Control Laws for Driftless Controllable Systems Via Oscillatory Approximation of Lie Brackets in Closed Loop , 1999, SIAM J. Control. Optim..

[4]  Hassan K. Khalil,et al.  Nonlinear Systems Third Edition , 2008 .

[5]  Andrew R. Teel,et al.  ESAIM: Control, Optimisation and Calculus of Variations , 2022 .

[6]  Michael Malisoff,et al.  Further remarks on strict input-to-state stable Lyapunov functions for time-varying systems , 2005, Autom..

[7]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[8]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[9]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[10]  Jean-Baptiste Pomet,et al.  Esaim: Control, Optimisation and Calculus of Variations Control Lyapunov Functions for Homogeneous " Jurdjevic-quinn " Systems , 2022 .

[11]  Eduardo Sontag,et al.  Forward Completeness, Unboundedness Observability, and their Lyapunov Characterizations , 1999 .

[12]  Eduardo Sontag,et al.  Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems , 1999 .

[13]  Eduardo D. Sontag,et al.  Lyapunov Characterizations of Input to Output Stability , 2000, SIAM J. Control. Optim..

[14]  M. A. Kaashoek,et al.  Robust control of linear systems and nonlinear control , 1990 .

[15]  Michael Malisoff,et al.  Further constructions of control-Lyapunov functions and stabilizing feedbacks for systems satisfying the Jurdjevic-Quinn conditions , 2006, IEEE Transactions on Automatic Control.

[17]  Frédéric Mazenc,et al.  Strict Lyapunov functions for time-varying systems , 2003, Autom..

[18]  Eduardo D. Sontag,et al.  FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS , 1990 .

[19]  Pieter Collins,et al.  A Trajectory-Space Approach to Hybrid Systems , 2004 .

[20]  Eduardo D. Sontag,et al.  Continuous control-Lyapunov functions for asymptotically controllable time-varying systems , 1999 .

[21]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[22]  J. Hespanha,et al.  Hybrid systems: Generalized solutions and robust stability , 2004 .

[23]  Antonio Loría,et al.  A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems , 2005, IEEE Transactions on Automatic Control.

[24]  Dragan Nesic,et al.  On uniform asymptotic stability of time-varying parameterized discrete-time cascades , 2004, IEEE Transactions on Automatic Control.

[25]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[26]  David Angeli,et al.  Input-to-state stability of PD-controlled robotic systems , 1999, Autom..

[27]  Eduardo D. Sontag,et al.  Input-Output-to-State Stability , 2001, SIAM J. Control. Optim..

[28]  Chaohong Cai,et al.  Converse Lyapunov theorems and robust asymptotic stability for hybrid systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[29]  Claude Samson,et al.  Velocity and torque feedback control of a nonholonomic cart , 1991 .

[30]  Wpmh Maurice Heemels,et al.  Introduction to hybrid systems , 2009 .

[31]  Eduardo D. Sontag,et al.  Uniform stability properties of switched systems with switchings governed by digraphs , 2005 .

[32]  Eduardo D. Sontag,et al.  On the representation of switched systems with inputs by perturbed control systems , 2005 .

[33]  Arjan van der Schaft,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[34]  Dragan Nesic,et al.  Lyapunov functions for time-varying systems satisfying generalized conditions of Matrosov theorem , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.