A SEARCH FOR RAPIDLY ACCRETING WHITE DWARFS IN THE SMALL MAGELLANIC CLOUD

The nature of the progenitors of Type Ia supernovae (SNe Ia) is still a mystery. While plausible candidates are known for both the single-degenerate and double-degenerate models, the observed numbers fall significantly short of what is required to reproduce the SNe Ia rate. Some of the most promising single-degenerate Type Ia progenitors are recurrent novae and super-soft sources (SSS). White dwarfs (WDs) with higher mass transfer rates can also be SN Ia progenitors. For these rapidly accreting white dwarfs (RAWDs), more material than is needed for steady burning accretes on the WD, and extends the WD's photosphere. Unlike SSS, such objects will likely not be detectable at soft X-ray energies, but will be bright at longer wavelengths, such as the far-ultraviolet (UV). Possible examples include LMC N66 and the V Sagittae stars. We present a survey using multi-object spectrographs looking for RAWDs in the central core of the Small Magellanic Cloud (SMC), from objects selected to be bright in the far-UV and with blue far UV ? V colors. While we find some unusual objects, and recover known planetary nebula and Wolf-Rayet (WR) stars, we detect no candidate RAWD. The upper limits from this non-detection depend on our expectations of what an RAWD should look like, as well assumptions about the internal extinction of the SMC. Assuming they resemble LMC N66 or fainter versions of WR stars we set an upper limit of 10-14 RAWDs in the SMC. However, our survey is unlikely to detect objects like V Sge, and hence we cannot set meaningful upper limits if RAWDs generally resemble V Sge.

[1]  D. Prialnik The Evolution of a Classical Nova Model through a Complete Cycle , 1986 .

[2]  R. Margutti,et al.  EVLA OBSERVATIONS CONSTRAIN THE ENVIRONMENT AND PROGENITOR SYSTEM OF Type Ia SUPERNOVA 2011fe , 2012, 1201.0994.

[3]  J. Maza,et al.  Time-dependent behavior and physical conditions of the LMC planetary nebula N66 , 1995 .

[4]  R. Corradi,et al.  Discovery of close binary central stars in the planetary nebulae NGC 6326 and NGC 6778 , 2011, 1105.5731.

[5]  Izumi Hachisu,et al.  SUPERSOFT X-RAY PHASE OF SINGLE DEGENERATE TYPE Ia SUPERNOVA PROGENITORS IN EARLY-TYPE GALAXIES , 2010, 1010.5860.

[6]  B. Warner Cataclysmic Variable Stars by Brian Warner , 1995 .

[7]  M. Ruiz,et al.  A high resolution spectroscopic study of the extraordinary planetary nebula LMC-N66 , , 2004 .

[8]  Eva K. Grebel,et al.  The Magellanic Clouds Photometric Survey: The Large Magellanic Cloud Stellar Catalog and Extinction Map , 2004 .

[9]  J. Hughes,et al.  Are the Models for Type Ia Supernova Progenitors Consistent with the Properties of Supernova Remnants? , 2007, astro-ph/0703321.

[10]  M. Ruiz,et al.  The central star of the planetary nebula N 66 in the Large Magellanic Cloud: A detailed analysis of its dramatic evolution 1983-2000 , 2003 .

[11]  O. Yaron,et al.  An Extended Grid of Nova Models. II. The Parameter Space of Nova Outbursts , 2005 .

[12]  M. Szymański The Optical Gravitational Lensing Experiment. Internet Access to the OGLE Photometry Data Set: OGLE-II BVI maps and I-band data , 2005, astro-ph/0602018.

[13]  D. Maoz,et al.  THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK , 2012, 1202.5472.

[14]  Tony Farrell,et al.  Installation and Commissioning of FLAMES, the VLT Multifibre Facility , 2002 .

[15]  Marat Gilfanov,et al.  An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate , 2010, Nature.

[16]  I. Hachisu,et al.  RX J0513.9–6951: The First Example of Accretion Wind Evolution, a Key Evolutionary Process to Type Ia Supernovae , 2003, astro-ph/0302485.

[17]  J. Steiner,et al.  The V Sagittae Stars , 1998 .

[18]  A Search for Radio Emission from Type Ia Supernovae , 2006 .

[19]  K. Nomoto,et al.  Young and Massive Binary Progenitors of Type Ia Supernovae and Their Circumstellar Matter , 2007, 0710.0319.

[20]  W. G. Dillon,et al.  THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY , 2011, 1109.0065.

[21]  K. Long,et al.  QU Car: a very high luminosity nova-like binary with a carbon-enriched companion , 2002, astro-ph/0209296.

[22]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[23]  M. S. Roberts,et al.  UIT: Ultraviolet observations of the small Magellanic cloud , 1994 .

[24]  A. Shafter,et al.  A PHOTOMETRIC STUDY OF THE PECULIAR BINARY STAR V SAGITTAE , 1997 .

[25]  K. Nomoto,et al.  Thermal Stability of White Dwarfs Accreting Hydrogen-rich Matter and Progenitors of Type Ia Supernovae , 2006, astro-ph/0603351.

[26]  J. Greiner Catalog of supersoft X-ray sources , 2000 .

[27]  C. Foellmi,et al.  Wolf—Rayet binaries in the Magellanic Clouds and implications for massive-star evolution — I. Small Magellanic Cloud , 2003 .

[28]  I. Hachisu,et al.  A Limit Cycle Model For Long-Term Optical Variations of V Sagittae: The Second Example of Accretion Wind Evolution , 2003, astro-ph/0308065.

[29]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[30]  I. Iben Common envelope formation and the merging of degenerate dwarf binaries , 1988 .

[31]  Edward L. Fitzpatrick,et al.  An average interstellar extinction curve for the Large Magellanic Cloud. , 1986 .

[32]  A new super-soft X-ray source in the Small Magellanic Cloud: Discovery of the first Be/white dwarf system in the SMC? , 2011, 1112.0176.

[33]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[34]  Rosanne Di Stefano,et al.  THE PROGENITORS OF TYPE Ia SUPERNOVAE. I. ARE THEY SUPERSOFT SOURCES , 2009, 0912.0757.

[35]  Vladimir Churilov,et al.  Performance of AAOmega: the AAT multi-purpose fiber-fed spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[36]  P. Rojo,et al.  A New Outburst in the Extraordinary Central Star of LMC-N66 , 2008 .

[37]  M. Seaton,et al.  Interstellar extinction in the UV , 1979 .

[38]  B. Schaefer COMPREHENSIVE PHOTOMETRIC HISTORIES OF ALL KNOWN GALACTIC RECURRENT NOVAE , 2009, 0912.4426.

[39]  S. Justham,et al.  SUB-CHANDRASEKHAR WHITE DWARF MERGERS AS THE PROGENITORS OF TYPE Ia SUPERNOVAE , 2010, 1006.4391.

[40]  K. Olsen,et al.  The Discovery of a 12th Wolf‐Rayet Star in the Small Magellanic Cloud , 2003, astro-ph/0308237.

[41]  Ultraviolet Imaging Telescope Observations of the Magellanic Clouds , 1998 .

[42]  M. Barlow The determination of the masses of Magellanic Cloud planetary nebulae using [O II] doublet ratio electron densities , 1987 .

[43]  Izumi Hachisu,et al.  A New Model for Progenitor Systems of Type Ia Supernovae , 1996 .

[44]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[45]  Mark Sullivan,et al.  The Progenitors of Type Ia Supernovae , 2008, 0806.3729.