A SEARCH FOR RAPIDLY ACCRETING WHITE DWARFS IN THE SMALL MAGELLANIC CLOUD
暂无分享,去创建一个
[1] D. Prialnik. The Evolution of a Classical Nova Model through a Complete Cycle , 1986 .
[2] R. Margutti,et al. EVLA OBSERVATIONS CONSTRAIN THE ENVIRONMENT AND PROGENITOR SYSTEM OF Type Ia SUPERNOVA 2011fe , 2012, 1201.0994.
[3] J. Maza,et al. Time-dependent behavior and physical conditions of the LMC planetary nebula N66 , 1995 .
[4] R. Corradi,et al. Discovery of close binary central stars in the planetary nebulae NGC 6326 and NGC 6778 , 2011, 1105.5731.
[5] Izumi Hachisu,et al. SUPERSOFT X-RAY PHASE OF SINGLE DEGENERATE TYPE Ia SUPERNOVA PROGENITORS IN EARLY-TYPE GALAXIES , 2010, 1010.5860.
[6] B. Warner. Cataclysmic Variable Stars by Brian Warner , 1995 .
[7] M. Ruiz,et al. A high resolution spectroscopic study of the extraordinary planetary nebula LMC-N66 , , 2004 .
[8] Eva K. Grebel,et al. The Magellanic Clouds Photometric Survey: The Large Magellanic Cloud Stellar Catalog and Extinction Map , 2004 .
[9] J. Hughes,et al. Are the Models for Type Ia Supernova Progenitors Consistent with the Properties of Supernova Remnants? , 2007, astro-ph/0703321.
[10] M. Ruiz,et al. The central star of the planetary nebula N 66 in the Large Magellanic Cloud: A detailed analysis of its dramatic evolution 1983-2000 , 2003 .
[11] O. Yaron,et al. An Extended Grid of Nova Models. II. The Parameter Space of Nova Outbursts , 2005 .
[12] M. Szymański. The Optical Gravitational Lensing Experiment. Internet Access to the OGLE Photometry Data Set: OGLE-II BVI maps and I-band data , 2005, astro-ph/0602018.
[13] D. Maoz,et al. THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK , 2012, 1202.5472.
[14] Tony Farrell,et al. Installation and Commissioning of FLAMES, the VLT Multifibre Facility , 2002 .
[15] Marat Gilfanov,et al. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate , 2010, Nature.
[16] I. Hachisu,et al. RX J0513.9–6951: The First Example of Accretion Wind Evolution, a Key Evolutionary Process to Type Ia Supernovae , 2003, astro-ph/0302485.
[17] J. Steiner,et al. The V Sagittae Stars , 1998 .
[18] A Search for Radio Emission from Type Ia Supernovae , 2006 .
[19] K. Nomoto,et al. Young and Massive Binary Progenitors of Type Ia Supernovae and Their Circumstellar Matter , 2007, 0710.0319.
[20] W. G. Dillon,et al. THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY , 2011, 1109.0065.
[21] K. Long,et al. QU Car: a very high luminosity nova-like binary with a carbon-enriched companion , 2002, astro-ph/0209296.
[22] A. Pickles. A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .
[23] M. S. Roberts,et al. UIT: Ultraviolet observations of the small Magellanic cloud , 1994 .
[24] A. Shafter,et al. A PHOTOMETRIC STUDY OF THE PECULIAR BINARY STAR V SAGITTAE , 1997 .
[25] K. Nomoto,et al. Thermal Stability of White Dwarfs Accreting Hydrogen-rich Matter and Progenitors of Type Ia Supernovae , 2006, astro-ph/0603351.
[26] J. Greiner. Catalog of supersoft X-ray sources , 2000 .
[27] C. Foellmi,et al. Wolf—Rayet binaries in the Magellanic Clouds and implications for massive-star evolution — I. Small Magellanic Cloud , 2003 .
[28] I. Hachisu,et al. A Limit Cycle Model For Long-Term Optical Variations of V Sagittae: The Second Example of Accretion Wind Evolution , 2003, astro-ph/0308065.
[29] M. Wolff,et al. A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .
[30] I. Iben. Common envelope formation and the merging of degenerate dwarf binaries , 1988 .
[31] Edward L. Fitzpatrick,et al. An average interstellar extinction curve for the Large Magellanic Cloud. , 1986 .
[32] A new super-soft X-ray source in the Small Magellanic Cloud: Discovery of the first Be/white dwarf system in the SMC? , 2011, 1112.0176.
[33] S. Woosley,et al. Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .
[34] Rosanne Di Stefano,et al. THE PROGENITORS OF TYPE Ia SUPERNOVAE. I. ARE THEY SUPERSOFT SOURCES , 2009, 0912.0757.
[35] Vladimir Churilov,et al. Performance of AAOmega: the AAT multi-purpose fiber-fed spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.
[36] P. Rojo,et al. A New Outburst in the Extraordinary Central Star of LMC-N66 , 2008 .
[37] M. Seaton,et al. Interstellar extinction in the UV , 1979 .
[38] B. Schaefer. COMPREHENSIVE PHOTOMETRIC HISTORIES OF ALL KNOWN GALACTIC RECURRENT NOVAE , 2009, 0912.4426.
[39] S. Justham,et al. SUB-CHANDRASEKHAR WHITE DWARF MERGERS AS THE PROGENITORS OF TYPE Ia SUPERNOVAE , 2010, 1006.4391.
[40] K. Olsen,et al. The Discovery of a 12th Wolf‐Rayet Star in the Small Magellanic Cloud , 2003, astro-ph/0308237.
[41] Ultraviolet Imaging Telescope Observations of the Magellanic Clouds , 1998 .
[42] M. Barlow. The determination of the masses of Magellanic Cloud planetary nebulae using [O II] doublet ratio electron densities , 1987 .
[43] Izumi Hachisu,et al. A New Model for Progenitor Systems of Type Ia Supernovae , 1996 .
[44] Geoffrey C. Clayton,et al. A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.
[45] Mark Sullivan,et al. The Progenitors of Type Ia Supernovae , 2008, 0806.3729.