MAX-PLUS-ALGEBRAIC PROBLEMS AND THE EXTENDED LINEAR COMPLEMENTARITY PROBLEM — ALGORITHMIC ASPECTS

Many fundamental problems in the max-plus-algebraic system theory for discrete event systems — among which the minimal state space realization problem — can be solved using an Extended Linear Complementarity Problem (ELCP). We present some new, more efficient methods to solve the ELCP. We show that an ELCP with a bounded feasible set can be recast as a standard Linear Complementarity Problem (LCP). Our proof results in three possible numerical solution methods for a given ELCP: regular ELCP algorithms, mixed integer linear programming algorithms, and regular LCP algorithms. We also apply these three methods to a basic max-plus-algebraic benchmark problem.

[1]  Robert R. Ross,et al.  Research introduction , 1974 .

[2]  J. Quadrat,et al.  A linear-system-theoretic view of discrete-event processes , 1983, The 22nd IEEE Conference on Decision and Control.

[3]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[4]  Bart De Schutter,et al.  Minimal realization in the max algebra is an extended linear complementarity problem , 1995 .

[5]  B. Schutter,et al.  The extended linear complementarity problem and its applications in the max-plus algebra , 1997 .

[6]  M. Seetharama Gowda,et al.  The extended linear complementarity problem , 1995, Math. Program..

[7]  Michael C. Ferris,et al.  Complementarity and variational problems : state of the art , 1997 .

[8]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[9]  Bart De Schutter,et al.  Optimal Traffic Light Control for a Single Intersection , 1999, Eur. J. Control.

[10]  Bart De Schutter,et al.  The linear dynamic complementarity problem is a special case of the extended linear complementarity problem , 1998 .

[11]  Domine M. W. Leenaerts,et al.  Piecewise Linear Modeling and Analysis , 1998 .

[12]  Sven Leyffer,et al.  Numerical Experience with Lower Bounds for MIQP Branch-And-Bound , 1998, SIAM J. Optim..

[13]  Laurence A. Wolsey,et al.  bc–opt: a branch-and-cut code for mixed integer programs , 1999, Math. Program..

[14]  M. Ferris,et al.  Complementarity problems in GAMS and the PATH solver 1 This material is based on research supported , 2000 .

[15]  Alberto Bemporad,et al.  miqp. m: a Matlab function for solving Mixed Integer Quadratic Programs Version 1.02 - User Guide , 2000 .

[16]  Bart De Schutter,et al.  Optimal Control of a Class of Linear Hybrid Systems with Saturation , 1999, SIAM J. Control. Optim..

[17]  Bart De Schutter,et al.  Model predictive control for max-plus-linear discrete event systems , 2001, Autom..

[18]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..