Finite Element Methods for Geometric Modeling and Processing Using General Fourth Order Geometric Flows

A variational formulation of a general form fourth order geometric partial differential equation is derived, and based on which a mixed finite element method is developed. Several surface modeling problems, including surface blending, hole filling and surface mesh refinement with the G1 continuity, are taken into account. The used geometric partial differential equation is universal, containing several well-known geometric partial differential equations as its special cases. The proposed method is general which can be used to construct surfaces for geometric design as well as simulate the behaviors of various geometric PDEs. Experimental results show that it is simple, efficient and gives very desirable results.

[1]  Michael J. Wilson,et al.  Generating blend surfaces using partial differential equations , 1989 .

[2]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[3]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[4]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[5]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[6]  K. Schweizerhof,et al.  Iterative mesh generation for FE‐computations on free form surfaces , 1997 .

[7]  M. Giaquinta,et al.  Calculus of Variations I , 1995 .

[8]  Qing Pan,et al.  Discrete surface modelling using partial differential equations , 2006, Comput. Aided Geom. Des..

[9]  Leif Kobbelt,et al.  Generating fair meshes with G/sup 1/ boundary conditions , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[10]  Guoliang Xu,et al.  G1 surface modelling using fourth order geometric flows , 2006, Comput. Aided Des..

[11]  B. Brunt The calculus of variations , 2003 .

[12]  Malcolm I. G. Bloor,et al.  Functionality in blend design , 1991, Comput. Aided Des..

[13]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[14]  Bert Jüttler,et al.  Geometric Modeling and Processing , 2009, Comput. Aided Geom. Des..

[15]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[16]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[17]  I. Holopainen Riemannian Geometry , 1927, Nature.

[18]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[19]  Chandrajit L. Bajaj,et al.  Acoustic scattering on arbitrary manifold surfaces , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.

[20]  Malcolm I. G. Bloor,et al.  Using partial differential equations to generate free-form surfaces , 1990, Comput. Aided Des..

[21]  Martin Rumpf,et al.  A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..

[22]  Hassan Ugail,et al.  Techniques for interactive design using the PDE method , 1999, TOGS.

[23]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[24]  Hong Qin,et al.  Direct Manipulation and Interactive Sculpting of PDE Surfaces , 2000, Comput. Graph. Forum.

[25]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[26]  Leif Kobbelt,et al.  Geometric fairing of irregular meshes for free-form surface design , 2001, Comput. Aided Geom. Des..

[27]  Hong Qin,et al.  Dynamic PDE-based surface design using geometric and physical constraints , 2005, Graph. Model..

[28]  Guoliang Xu,et al.  A general framework for surface modeling using geometric partial differential equations , 2008, Comput. Aided Geom. Des..

[29]  Gerhard Dziuk,et al.  A fully discrete numerical scheme for weighted mean curvature flow , 2002, Numerische Mathematik.

[30]  Guoliang Xu,et al.  CONSTRUCTION OF GEOMETRIC PARTIAL DIFFERENTIAL EQUATIONS IN COMPUTATIONAL GEOMETRY , 2006 .