Finite Element Methods for Geometric Modeling and Processing Using General Fourth Order Geometric Flows
暂无分享,去创建一个
[1] Michael J. Wilson,et al. Generating blend surfaces using partial differential equations , 1989 .
[2] Martin Rumpf,et al. Anisotropic geometric diffusion in surface processing , 2000 .
[3] T. Banchoff,et al. Differential Geometry of Curves and Surfaces , 2010 .
[4] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[5] Mark Meyer,et al. Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.
[6] K. Schweizerhof,et al. Iterative mesh generation for FE‐computations on free form surfaces , 1997 .
[7] M. Giaquinta,et al. Calculus of Variations I , 1995 .
[8] Qing Pan,et al. Discrete surface modelling using partial differential equations , 2006, Comput. Aided Geom. Des..
[9] Leif Kobbelt,et al. Generating fair meshes with G/sup 1/ boundary conditions , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.
[10] Guoliang Xu,et al. G1 surface modelling using fourth order geometric flows , 2006, Comput. Aided Des..
[11] B. Brunt. The calculus of variations , 2003 .
[12] Malcolm I. G. Bloor,et al. Functionality in blend design , 1991, Comput. Aided Des..
[13] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[14] Bert Jüttler,et al. Geometric Modeling and Processing , 2009, Comput. Aided Geom. Des..
[15] Chandrajit L. Bajaj,et al. Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.
[16] Michael Ortiz,et al. Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.
[17] I. Holopainen. Riemannian Geometry , 1927, Nature.
[18] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[19] Chandrajit L. Bajaj,et al. Acoustic scattering on arbitrary manifold surfaces , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.
[20] Malcolm I. G. Bloor,et al. Using partial differential equations to generate free-form surfaces , 1990, Comput. Aided Des..
[21] Martin Rumpf,et al. A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..
[22] Hassan Ugail,et al. Techniques for interactive design using the PDE method , 1999, TOGS.
[23] I. Chavel. Riemannian Geometry: Subject Index , 2006 .
[24] Hong Qin,et al. Direct Manipulation and Interactive Sculpting of PDE Surfaces , 2000, Comput. Graph. Forum.
[25] G. Dziuk,et al. An algorithm for evolutionary surfaces , 1990 .
[26] Leif Kobbelt,et al. Geometric fairing of irregular meshes for free-form surface design , 2001, Comput. Aided Geom. Des..
[27] Hong Qin,et al. Dynamic PDE-based surface design using geometric and physical constraints , 2005, Graph. Model..
[28] Guoliang Xu,et al. A general framework for surface modeling using geometric partial differential equations , 2008, Comput. Aided Geom. Des..
[29] Gerhard Dziuk,et al. A fully discrete numerical scheme for weighted mean curvature flow , 2002, Numerische Mathematik.
[30] Guoliang Xu,et al. CONSTRUCTION OF GEOMETRIC PARTIAL DIFFERENTIAL EQUATIONS IN COMPUTATIONAL GEOMETRY , 2006 .