Noise and bifurcations

The influence of while noise on bifurcating dynamical systems is investigated using both Fokker-Planck and functional integral methods. Noise leads to fuzzy bifurcations where physically relevant quantities become smooth functions of the bifurcation parameters. We study dynamical and probabilistic quantities, such as invariant measures, Liapunov exponents, correlation functions, and exit times. The behavior of these quantities near the deterministic bifurcation point changes for distinct values of the control parameter. Therefore the very concept of bifurcation point becomes meaningless and must be replaced by the notion of bifurcation region.

[1]  M. Freidlin,et al.  Functional Integration and Partial Differential Equations. (AM-109), Volume 109 , 1985 .

[2]  J. M. Sancho,et al.  Analytical and numerical studies of multiplicative noise , 1982 .

[3]  K. Steinmüller HAKEN, H.: Synergetics. An Introduction. Springer‐Verlag, Berlin‐Heidelberg‐New York 1977. XII, 325 S., 125 Abb., DM 72.—. , 1978 .

[4]  H. Janssen,et al.  Renormalized field theory of critical dynamics , 1976 .

[5]  Comment on asymptotic properties of coupled Langevin equations , 1986 .

[6]  B. A. Huberman,et al.  Theory of intermittency , 1982 .

[7]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[8]  C. Meunier,et al.  Statistical properties of type I intermittency , 1982 .

[9]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[10]  D. Ludwig Persistence of Dynamical Systems under Random Perturbations , 1975 .

[11]  E. Gozzi,et al.  Functional-integral approach to Parisi-Wu stochastic quantization: Scalar theory , 1983 .

[12]  C. Meunier Continuity of type-I intermittency from a measure-theoretical point of view , 1984 .

[13]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[14]  E. Tirapegui,et al.  General Langevin Equations and Functional Integration , 1981 .

[15]  C. Broeck,et al.  Asymptotic properties of coupled nonlinear langevin equations in the limit of weak noise. I: Cusp bifurcation , 1982 .

[16]  Kurt Wiesenfeld,et al.  Bifurcations in fluctuating systems: The center-manifold approach , 1983 .

[17]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[18]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[19]  U. Weiss Decay of unstable states in macroscopic systems , 1982 .

[20]  Robert Graham,et al.  Path integral formulation of general diffusion processes , 1977 .

[21]  P. Coullet,et al.  Normal form of a Hopf bifurcation with noise , 1985 .

[22]  Alain Arneodo,et al.  Oscillators with chaotic behavior: An illustration of a theorem by Shil'nikov , 1982 .

[23]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[24]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[25]  C. Itzykson,et al.  Functional methods and perturbation theory , 1975 .

[26]  Srinivasa Varadhan,et al.  Lectures on Diffusion Problems and Partial Differential Equations , 1980 .

[27]  Jean-Pierre Eckmann,et al.  Intermittency in the presence of noise , 1981 .

[28]  Graham,et al.  Nonequilibrium potentials for local codimension-2 bifurcations of dissipative flows. , 1987, Physical review. A, General physics.

[29]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .