Gaussian model‐based partitioning using iterated local search

The emergence of Gaussian model-based partitioning as a viable alternative to K-means clustering fosters a need for discrete optimization methods that can be efficiently implemented using model-based criteria. A variety of alternative partitioning criteria have been proposed for more general data conditions that permit elliptical clusters, different spatial orientations for the clusters, and unequal cluster sizes. Unfortunately, many of these partitioning criteria are computationally demanding, which makes the multiple-restart (multistart) approach commonly used for K-means partitioning less effective as a heuristic solution strategy. As an alternative, we propose an approach based on iterated local search (ILS), which has proved effective in previous combinatorial data analysis contexts. We compared multistart, ILS and hybrid multistart-ILS procedures for minimizing a very general model-based criterion that assumes no restrictions on cluster size or within-group covariance structure. This comparison, which used 23 data sets from the classification literature, revealed that the ILS and hybrid heuristics generally provided better criterion function values than the multistart approach when all three methods were constrained to the same 10-min time limit. In many instances, these differences in criterion function values reflected profound differences in the partitions obtained.

[1]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[2]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[3]  R. Jancey Multidimensional group analysis , 1966 .

[4]  H. P. Friedman,et al.  On Some Invariant Criteria for Grouping Data , 1967 .

[5]  Robert E. Jensen,et al.  A Dynamic Programming Algorithm for Cluster Analysis , 1969, Oper. Res..

[6]  F. Rohlf Adaptive Hierarchical Clustering Schemes , 1970 .

[7]  A. Scott,et al.  Clustering methods based on likelihood ratio criteria. , 1971 .

[8]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[9]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[10]  R. Maronna,et al.  Multivariate Clustering Procedures with Variable Metrics , 1974 .

[11]  Keinosuke Fukunaga,et al.  A Branch and Bound Clustering Algorithm , 1975, IEEE Transactions on Computers.

[12]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[13]  C. F. Banfield,et al.  Algorithm AS 113: A Transfer for Non-Hierarchical Classification , 1977 .

[14]  Sankar K. Pal,et al.  Fuzzy sets and decisionmaking approaches in vowel and speaker recognition , 1977 .

[15]  Roger K. Blashfield The equivalence of three statistical packages for performing hierarchical cluster analysis , 1977 .

[16]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[17]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[18]  Maurice K. Wong,et al.  Algorithm AS136: A k-means clustering algorithm. , 1979 .

[19]  Charles K. Bayne,et al.  Monte Carlo comparisons of selected clustering procedures , 1980, Pattern Recognit..

[20]  David J. Hand,et al.  Branch and Bound in Statistical Data Analysis , 1981 .

[21]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[22]  Michael J. Symons,et al.  Clustering criteria and multivariate normal mixtures , 1981 .

[23]  F. Marriott Optimization methods of cluster analysis , 1982 .

[24]  G. Diehr Evaluation of a Branch and Bound Algorithm for Clustering , 1985 .

[25]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[26]  Phipps Arabie,et al.  Combinatorial Data Analysis: Optimization by Dynamic Programming , 1987 .

[27]  M. P. Windham Parameter modification for clustering criteria , 1987 .

[28]  G. W. Milligan,et al.  A study of standardization of variables in cluster analysis , 1988 .

[29]  Martin Grötschel,et al.  Solution of large-scale symmetric travelling salesman problems , 1991, Math. Program..

[30]  G. Celeux,et al.  A Classification EM algorithm for clustering and two stochastic versions , 1992 .

[31]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[32]  Larry W. Jacobs,et al.  A simulated annealing approach to the cyclic staff-scheduling problem , 1993 .

[33]  Michael J. Brusco,et al.  Improving Personnel Scheduling at Airline Stations , 1995, Oper. Res..

[34]  L. W. Jacobs,et al.  Note: A local-search heuristic for large set-covering problems , 1995 .

[35]  M. Brusco Morph-Based Local-Search Heuristics for Large-Scale Combinatorial Data Analysis , 1999 .

[36]  G. R. Schreiber,et al.  Cut Size Statistics of Graph Bisection Heuristics , 1999, SIAM J. Optim..

[37]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[38]  M. Brusco,et al.  A variable-selection heuristic for K-means clustering , 2001 .

[39]  Pierre Hansen,et al.  J-MEANS: a new local search heuristic for minimum sum of squares clustering , 1999, Pattern Recognit..

[40]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[41]  S. Dolnicar,et al.  An examination of indexes for determining the number of clusters in binary data sets , 2002, Psychometrika.

[42]  Roger W. Johnson,et al.  Exploring Relationships in Body Dimensions , 2003 .

[43]  David S. Johnson,et al.  8. The traveling salesman problem: a case study , 2003 .

[44]  D. Steinley Properties of the Hubert-Arabie adjusted Rand index. , 2004, Psychological methods.

[45]  M. Brusco Clustering binary data in the presence of masking variables. , 2004, Psychological methods.

[46]  Jacqueline J. Meulman,et al.  Improving Dynamic Programming Strategies for Partitioning , 2004, J. Classif..

[47]  Iven Van Mechelen,et al.  Hierarchical classes models for three-way three-mode binary data: interrelations and model selection , 2005 .

[48]  M. Brusco,et al.  Branch-and-Bound Applications in Combinatorial Data Analysis , 2005 .

[49]  M. Brusco A Repetitive Branch-and-Bound Procedure for Minimum Within-Cluster Sums of Squares Partitioning , 2006, Psychometrika.

[50]  Douglas Steinley,et al.  K-means clustering: a half-century synthesis. , 2006, The British journal of mathematical and statistical psychology.

[51]  M. Brusco,et al.  A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning , 2007 .

[52]  M. Brusco,et al.  Optimal Partitioning of a Data Set Based on the p-Median Model , 2008 .

[53]  Michael J. Brusco,et al.  Initializing K-means Batch Clustering: A Critical Evaluation of Several Techniques , 2007, J. Classif..

[54]  Iven Van Mechelen,et al.  The Local Minima Problem in Hierarchical Classes Analysis: An Evaluation of a Simulated Annealing Algorithm and Various Multistart Procedures , 2007 .

[55]  M. Brusco,et al.  Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures , 2008 .

[56]  Thomas Stützle,et al.  A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem , 2007, Eur. J. Oper. Res..

[57]  Iven Van Mechelen,et al.  CLASSI: A classification model for the study of sequential processes and individual differences therein , 2008 .

[58]  Hans-Friedrich Köhn,et al.  Comment on "Clustering by Passing Messages Between Data Points" , 2008, Science.

[59]  Thomas Stützle,et al.  An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives , 2008, Eur. J. Oper. Res..

[60]  Tom F. Wilderjans,et al.  The CHIC Model: A Global Model for Coupled Binary Data , 2008 .

[61]  Douglas Steinley,et al.  A New Variable Weighting and Selection Procedure for K-means Cluster Analysis , 2008, Multivariate behavioral research.

[62]  Lawrence Hubert,et al.  Order-Constrained Solutions in K-Means Clustering: Even Better Than Being Globally Optimal , 2008 .

[63]  David S. Johnson,et al.  The Traveling Salesman Problem: A Case Study in Local Optimization , 2008 .

[64]  Pierre Hansen,et al.  NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.

[65]  M. Brusco,et al.  Clustering Qualitative Data Based on Binary Equivalence Relations: Neighborhood Search Heuristics for the Clique Partitioning Problem , 2009 .

[66]  Michael J. Brusco,et al.  Exemplar-Based Clustering via Simulated Annealing , 2009 .

[67]  T. Stützle,et al.  Iterated Local Search: Framework and Applications , 2018, Handbook of Metaheuristics.

[68]  David J. Bartholomew,et al.  Latent Variable Models and Factor Analysis: A Unified Approach , 2011 .

[69]  M. Brusco,et al.  Evaluating mixture modeling for clustering: recommendations and cautions. , 2011, Psychological methods.

[70]  M. Brusco,et al.  Choosing the number of clusters in Κ-means clustering. , 2011, Psychological methods.

[71]  Pierre Hansen,et al.  An improved column generation algorithm for minimum sum-of-squares clustering , 2009, Math. Program..

[72]  Tom F. Wilderjans,et al.  The SIMCLAS Model: Simultaneous Analysis of Coupled Binary Data Matrices with Noise Heterogeneity Between and Within Data Blocks , 2012, Psychometrika.

[73]  P Kuppens,et al.  Clusterwise HICLAS: A generic modeling strategy to trace similarities and differences in multiblock binary data , 2012, Behavior research methods.

[74]  Ping Chen,et al.  Self-adaptive perturbation and multi-neighborhood search for iterated local search on the permutation flow shop problem , 2015, Comput. Ind. Eng..

[75]  Michael J. Brusco,et al.  An iterated local search heuristic for cell formation , 2015, Comput. Ind. Eng..

[76]  Roger Z. Ríos-Mercado,et al.  Improving the quality of heuristic solutions for the capacitated vertex p-center problem through iterated greedy local search with variable neighborhood descent , 2015, Comput. Oper. Res..

[77]  M. Cugmas,et al.  On comparing partitions , 2015 .

[78]  Anand Subramanian,et al.  An iterated local search heuristic for the split delivery vehicle routing problem , 2015, Comput. Oper. Res..

[79]  Pierre Hansen,et al.  Variable neighborhood search , 1997, Eur. J. Oper. Res..