Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design

We introduce Deep Adaptive Design (DAD), a method for amortizing the cost of adaptive Bayesian experimental design that allows experiments to be run in real-time. Traditional sequential Bayesian optimal experimental design approaches require substantial computation at each stage of the experiment. This makes them unsuitable for most real-world applications, where decisions must typically be made quickly. DAD addresses this restriction by learning an amortized design network upfront and then using this to rapidly run (multiple) adaptive experiments at deployment time. This network represents a design policy which takes as input the data from previous steps, and outputs the next design using a single forward pass; these design decisions can be made in milliseconds during the live experiment. To train the network, we introduce contrastive information bounds that are suitable objectives for the sequential setting, and propose a customized network architecture that exploits key symmetries. We demonstrate that DAD successfully amortizes the process of experimental design, outperforming alternative strategies on a number of problems.

[1]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[2]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[3]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[4]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[5]  Yee Whye Teh,et al.  Variational Bayesian Optimal Experimental Design , 2019, NeurIPS.

[6]  Yee Whye Teh,et al.  Conditional Neural Processes , 2018, ICML.

[7]  Yee Whye Teh,et al.  Probabilistic symmetry and invariant neural networks , 2019, J. Mach. Learn. Res..

[8]  J. E. Mazur An adjusting procedure for studying delayed reinforcement. , 1987 .

[9]  Michael Figurnov,et al.  Monte Carlo Gradient Estimation in Machine Learning , 2019, J. Mach. Learn. Res..

[10]  Alexander A. Alemi,et al.  On Variational Bounds of Mutual Information , 2019, ICML.

[11]  Christopher C. Drovandi,et al.  Likelihood-Free Extensions for Bayesian Sequentially Designed Experiments , 2016 .

[12]  Roman Garnett,et al.  BINOCULARS for efficient, nonmyopic sequential experimental design , 2019, ICML.

[13]  R. McMichael,et al.  Sequential Bayesian experiment design for optically detected magnetic resonance of nitrogen-vacancy centers. , 2020, Physical review applied.

[14]  T S Critchfield,et al.  Temporal discounting: basic research and the analysis of socially important behavior. , 2001, Journal of applied behavior analysis.

[15]  Raul Tempone,et al.  Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations , 2013 .

[16]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[17]  Robert J. Butera,et al.  Sequential Optimal Design of Neurophysiology Experiments , 2009, Neural Computation.

[18]  G. Gibson,et al.  Optimal Observation Times in Experimental Epidemic Processes , 2008, Biometrics.

[19]  Hongseok Yang,et al.  On Nesting Monte Carlo Estimators , 2017, ICML.

[20]  L. Green,et al.  A discounting framework for choice with delayed and probabilistic rewards. , 2004, Psychological bulletin.

[21]  Tom Rainforth,et al.  Automating inference, learning, and design using probabilistic programming , 2017 .

[22]  J. Bernardo,et al.  Simulation-Based Optimal Design , 1999 .

[23]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[24]  Michael U. Gutmann,et al.  Sequential Bayesian Experimental Design for Implicit Models via Mutual Information , 2020, ArXiv.

[25]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[26]  J. Marin,et al.  Population Monte Carlo , 2004 .

[27]  Amos J. Storkey,et al.  Towards a Neural Statistician , 2016, ICLR.

[28]  Pieter Abbeel,et al.  Planning to Explore via Self-Supervised World Models , 2020, ICML.

[29]  David Duvenaud,et al.  Inference Suboptimality in Variational Autoencoders , 2018, ICML.

[30]  Peter A. J. Hilbers,et al.  A Bayesian approach to targeted experiment design , 2012, Bioinform..

[31]  John K. Kruschke,et al.  Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan , 2014 .

[32]  Adam Foster,et al.  Unbiased MLMC stochastic gradient-based optimization of Bayesian experimental designs , 2020, SIAM J. Sci. Comput..

[33]  Jay I. Myung,et al.  A Tutorial on Adaptive Design Optimization. , 2013, Journal of mathematical psychology.

[34]  John W. Fisher,et al.  A Robust Approach to Sequential Information Theoretic Planning , 2018, ICML.

[35]  Jon A. Krosnick,et al.  Optimizing Survey Questionnaire Design in Political Science , 2010 .

[36]  H. Robbins A Stochastic Approximation Method , 1951 .

[37]  Sepp Hochreiter,et al.  Untersuchungen zu dynamischen neuronalen Netzen , 1991 .

[38]  Anthony N. Pettitt,et al.  A Sequential Monte Carlo Algorithm to Incorporate Model Uncertainty in Bayesian Sequential Design , 2014 .

[39]  Christian P. Robert,et al.  Bayesian-Optimal Design via Interacting Particle Systems , 2006 .

[40]  Benjamin T Vincent,et al.  Hierarchical Bayesian estimation and hypothesis testing for delay discounting tasks , 2015, Behavior Research Methods.

[41]  Oriol Vinyals,et al.  Representation Learning with Contrastive Predictive Coding , 2018, ArXiv.

[42]  Sebastian Nowozin,et al.  Debiasing Evidence Approximations: On Importance-weighted Autoencoders and Jackknife Variational Inference , 2018, ICLR.

[43]  Yee Whye Teh,et al.  A Unified Stochastic Gradient Approach to Designing Bayesian-Optimal Experiments , 2020, AISTATS.

[44]  Jonathan E Friedel,et al.  Measuring Delay Discounting in Humans Using an Adjusting Amount Task. , 2016, Journal of visualized experiments : JoVE.

[45]  John W. Fisher,et al.  Sequential Bayesian Experimental Design with Variable Cost Structure , 2020, NeurIPS.

[46]  Noah D. Goodman,et al.  Learning Stochastic Inverses , 2013, NIPS.

[47]  K. Kirby One-year temporal stability of delay-discount rates , 2009, Psychonomic bulletin & review.

[48]  Michael U. Gutmann,et al.  Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation , 2020, ICML.

[49]  Yurii S. Moroz,et al.  Ultra-large library docking for discovering new chemotypes , 2019, Nature.

[50]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[51]  Pieter Abbeel,et al.  Gradient Estimation Using Stochastic Computation Graphs , 2015, NIPS.

[52]  Christopher C. Drovandi,et al.  A Laplace-based algorithm for Bayesian adaptive design , 2020, Stat. Comput..

[53]  X. Huan,et al.  GRADIENT-BASED STOCHASTIC OPTIMIZATION METHODS IN BAYESIAN EXPERIMENTAL DESIGN , 2012, 1212.2228.

[54]  Neil D. Lawrence,et al.  GLASSES: Relieving The Myopia Of Bayesian Optimisation , 2015, AISTATS.

[55]  Anthony N. Pettitt,et al.  A Review of Modern Computational Algorithms for Bayesian Optimal Design , 2016 .

[56]  Tom Rainforth,et al.  The DARC Toolbox: automated, flexible, and efficient delayed and risky choice experiments using Bayesian adaptive design , 2017 .

[57]  Joel R. Evans,et al.  The value of online surveys , 2005, Internet Res..

[58]  Noah D. Goodman,et al.  Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..

[59]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[60]  Jascha Sohl-Dickstein,et al.  REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models , 2017, NIPS.

[61]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[62]  X. Huan,et al.  Sequential Bayesian optimal experimental design via approximate dynamic programming , 2016, 1604.08320.