Hybrid reflected‐ultrasound computed tomography versus B‐mode‐ultrasound for muscle scoring in spinal muscular atrophy

Novel light‐ and sound‐based technologies like multispectral optoacoustic tomography (MSOT) with co‐registered reflected‐ultrasound computed tomography (RUCT) could add additional value to conventional ultrasound (US) for disease phenotyping in pediatric spinal muscular atrophy (SMA). The aim of this study was to investigate the quality of RUCT compared to US for qualitative and quantitative assessment of imaging neuromuscular disorders.

[1]  M. Neurath,et al.  Multispectral optoacoustic tomography for non-invasive disease phenotyping in pediatric spinal muscular atrophy patients , 2021, Photoacoustics.

[2]  A. Boon,et al.  Diagnostic accuracy of gray scale muscle ultrasound screening for pediatric neuromuscular disease , 2021, Muscle & nerve.

[3]  Alexandra L. Wagner,et al.  Precision of handheld multispectral optoacoustic tomography for muscle imaging , 2020, Photoacoustics.

[4]  N. van Alfen,et al.  Muscle ultrasound: Present state and future opportunities , 2020, Muscle & nerve.

[5]  Adrian P. Regensburger,et al.  Shedding light on pediatric diseases: multispectral optoacoustic tomography at the doorway to clinical applications , 2020, Molecular and Cellular Pediatrics.

[6]  M. Uder,et al.  Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy , 2019, Nature Medicine.

[7]  Vasilis Ntziachristos,et al.  A review of clinical photoacoustic imaging: Current and future trends , 2019, Photoacoustics.

[8]  H. Prokosch,et al.  Time Tracking of Standard Ultrasound Examinations in Pediatric Hospitals and Pediatric Medical Practices – A Multicenter Study by the Pediatric Section of the German Society of Ultrasound in Medicine (DEGUM) , 2019, Ultraschall in der Medizin - European Journal of Ultrasound.

[9]  Vasilis Ntziachristos,et al.  Cardiovascular optoacoustics: From mice to men – A review , 2019, Photoacoustics.

[10]  T. Varghese,et al.  Influence of Ultrasound System and Gain on Grayscale Median Values , 2018, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[11]  N. van Alfen,et al.  Neuromuscular Ultrasound: Clinical Applications and Diagnostic Values , 2018, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[12]  R. Finkel,et al.  Ambulatory function in spinal muscular atrophy: Age-related patterns of progression , 2018, PloS one.

[13]  R. Finkel,et al.  Motor milestone assessment of infants with spinal muscular atrophy using the hammersmith infant neurological Exam—Part 2: Experience from a nusinersen clinical study , 2018, Muscle & nerve.

[14]  Vasilis Ntziachristos,et al.  Flow-mediated dilatation test using optoacoustic imaging: a proof-of-concept. , 2017, Biomedical optics express.

[15]  R. Finkel,et al.  Revised upper limb module for spinal muscular atrophy: Development of a new module , 2017, Muscle & nerve.

[16]  Seward B. Rutkove,et al.  Quantitative muscle ultrasound detects disease progression in Duchenne muscular dystrophy , 2017, Annals of neurology.

[17]  Wolfgang Uter,et al.  Multispectral Optoacoustic Tomography for Assessment of Crohn's Disease Activity. , 2017, The New England journal of medicine.

[18]  Kevin W. Eliceiri,et al.  ImageJ2: ImageJ for the next generation of scientific image data , 2017, BMC Bioinformatics.

[19]  J. Montes,et al.  Six‐minute walk test is reliable and valid in spinal muscular atrophy , 2016, Muscle & nerve.

[20]  M. Neurath,et al.  Multispectral Optoacoustic Tomography in Crohn's Disease: Noninvasive Imaging of Disease Activity. , 2016, Gastroenterology.

[21]  Vasilis Ntziachristos,et al.  In-vivo handheld optoacoustic tomography of the human thyroid , 2016, Photoacoustics.

[22]  Terry K Koo,et al.  A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. , 2016, Journal Chiropractic Medicine.

[23]  Michael O Harris-Love,et al.  Ultrasound estimates of muscle quality in older adults: reliability and comparison of Photoshop and ImageJ for the grayscale analysis of muscle echogenicity , 2016, PeerJ.

[24]  C. Zaidman,et al.  Quantitative muscle ultrasound in Duchenne muscular dystrophy: A comparison of techniques , 2015, Muscle & nerve.

[25]  Jonathan C. Baker,et al.  Detection of peripheral nerve pathology , 2013, Neurology.

[26]  Mark R Holland,et al.  Quantitative ultrasound of skeletal muscle: reliable measurements of calibrated muscle backscatter from different ultrasound systems. , 2012, Ultrasound in medicine & biology.

[27]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[28]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[29]  Nens van Alfen,et al.  Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy , 2012, Neuromuscular Disorders.

[30]  W. Chung,et al.  Validation of the Expanded Hammersmith Functional Motor Scale in Spinal Muscular Atrophy Type II and III , 2011, Journal of child neurology.

[31]  W. Chung,et al.  Validation of the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) , 2011, Pediatric physical therapy : the official publication of the Section on Pediatrics of the American Physical Therapy Association.

[32]  V. Ntziachristos,et al.  Molecular imaging by means of multispectral optoacoustic tomography (MSOT). , 2010, Chemical reviews.

[33]  W. Chung,et al.  Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy , 2010, Neurology.

[34]  R. Finkel,et al.  The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): Test development and reliability , 2010, Neuromuscular Disorders.

[35]  V. Dubowitz Ramblings in the history of spinal muscular atrophy , 2009, Neuromuscular Disorders.

[36]  Machiel J Zwarts,et al.  Muscle ultrasound in neuromuscular disorders , 2008, Muscle & nerve.

[37]  R. Finkel,et al.  An expanded version of the Hammersmith Functional Motor Scale for SMA II and III patients , 2007, Neuromuscular Disorders.

[38]  S. Pillen,et al.  Quantitative skeletal muscle ultrasound: Diagnostic value in childhood neuromuscular disease , 2007, Neuromuscular Disorders.

[39]  Machiel J Zwarts,et al.  Skeletal muscle ultrasonography: Visual versus quantitative evaluation. , 2006, Ultrasound in medicine & biology.

[40]  M. Main,et al.  Reliability of the Hammersmith functional motor scale for spinal muscular atrophy in a multicentric study , 2006, Neuromuscular Disorders.

[41]  M J Zwarts,et al.  Quantitative skeletal muscle ultrasonography in children with suspected neuromuscular disease , 2003, Muscle & nerve.

[42]  E Mercuri,et al.  Optimality score for the neurologic examination of the infant at 12 and 18 months of age. , 1999, The Journal of pediatrics.

[43]  M. O'Donnell,et al.  Synthetic aperture imaging for small scale systems , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  J. Weissenbach,et al.  Identification and characterization of a spinal muscular atrophy-determining gene , 1995, Cell.

[45]  B. Falck,et al.  Ultrasound, computed tomography and magnetic resonance imaging in myopathies: correlations with electromyography and histopathology , 1994, Acta neurologica Scandinavica.

[46]  S Leeman,et al.  Ultrasound imaging in the diagnosis of muscle disease. , 1982, The Journal of pediatrics.

[47]  G. S. Dubova,et al.  The recovery of the absorption spectra of oxy- and deoxyhemoglobin from the coefficients of diffuse transmission and reflection of whole blood , 1982 .

[48]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.