Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation

[1]  M. Barbeck,et al.  Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation. , 2013, Clinical implant dentistry and related research.

[2]  M. Barbeck,et al.  The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics , 2012, Biomedical materials.

[3]  T. Gedrange,et al.  A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig. , 2011, Folia histochemica et cytobiologica.

[4]  Ronald E. Unger,et al.  Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. , 2010, Acta biomaterialia.

[5]  M. Barbeck,et al.  Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in Wistar rats , 2010, Biomedical materials.

[6]  R. Müller,et al.  Collagen-embedded hydroxylapatite–beta-tricalcium phosphate–silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth , 2010, Biomedical materials.

[7]  Xing‐dong Zhang,et al.  Ectopic Bone Formation in Adipose-derived Stromal Cell-seeded Osteoinductive Calcium Phosphate Scaffolds , 2010, Journal of biomaterials applications.

[8]  C James Kirkpatrick,et al.  Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. , 2009, Biomaterials.

[9]  C. Dellavia,et al.  Sinus lift using a nanocrystalline hydroxyapatite silica gel in severely resorbed maxillae: histological preliminary study. , 2009, Clinical implant dentistry and related research.

[10]  R. Sader,et al.  Maxillary Sinus Grafting with a Nano-Structured Biomaterial: Preliminary Clinical and Histological Results , 2009, European Surgical Research.

[11]  James M. Anderson,et al.  Giant cell formation and function , 2009, Current opinion in hematology.

[12]  James M. Anderson,et al.  Foreign body reaction to biomaterials. , 2008, Seminars in immunology.

[13]  T. Gerber,et al.  Macroscopical, histological, and morphometric studies of porous bone-replacement materials in minipigs 8 months after implantation. , 2006, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[14]  Clemens A van Blitterswijk,et al.  Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics , 2006, International journal of nanomedicine.

[15]  Clemens A van Blitterswijk,et al.  Osteoinduction by biomaterials--physicochemical and structural influences. , 2006, Journal of biomedical materials research. Part A.

[16]  C. V. van Blitterswijk,et al.  Relevance of Osteoinductive Biomaterials in Critical‐Sized Orthotopic Defect , 2006, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[17]  Werner Götz,et al.  Nanostructuring of Biomaterials—A Pathway to Bone Grafting Substitute , 2006, European Journal of Trauma.

[18]  Huipin Yuan,et al.  3D microenvironment as essential element for osteoinduction by biomaterials. , 2005, Biomaterials.

[19]  G. Daculsi,et al.  Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. , 2005, Bone.

[20]  K. Shinomiya,et al.  Beta-tricalcium phosphate (beta-TCP) graft combined with bone marrow stromal cells (MSCs) for posterolateral spine fusion. , 2005, Journal of medical and dental sciences.

[21]  E. Burger,et al.  Histomorphometry of human sinus floor augmentation using a porous beta-tricalcium phosphate: a prospective study. , 2004, Clinical oral implants research.

[22]  J. L. Russell,et al.  Donor age and gender effects on osteoinductivity of demineralized bone matrix. , 2004, Journal of biomedical materials research. Part B, Applied biomaterials.

[23]  F. Peters,et al.  Functional Materials for Bone Regeneration from Beta‐Tricalcium Phosphate , 2004 .

[24]  S. Parikh Bone graft substitutes: past, present, future. , 2002, Journal of postgraduate medicine.

[25]  C. Finkemeier,et al.  Bone-grafting and bone-graft substitutes. , 2002, The Journal of bone and joint surgery. American volume.

[26]  Arun K Gosain,et al.  A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I. , 2002, Plastic and reconstructive surgery.

[27]  J. Glowacki,et al.  Tissue reactions to particles of bone‐substitute materials in intraosseous and heterotopic sites in rats: discrimination of osteoinduction, osteocompatibility, and inflammation , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[28]  E. Burger,et al.  Histology of human alveolar bone regeneration with a porous tricalcium phosphate. A report of two cases. , 2001, Clinical oral implants research.

[29]  James M. Anderson,et al.  Biological Responses to Materials , 2001 .

[30]  T. Webster,et al.  Enhanced osteoclast-like cell functions on nanophase ceramics. , 2001, Biomaterials.

[31]  C. R. Howlett,et al.  Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. , 1999, Journal of biomedical materials research.

[32]  Xing‐dong Zhang,et al.  Osteoinduction by calcium phosphate biomaterials , 1998, Journal of materials science. Materials in medicine.

[33]  Marc A. Asher,et al.  Iliac Crest Bone Graft Harvest Donor Site Morbidity: A Statistical Evaluation , 1995, Spine.

[34]  Banwart Jc,et al.  Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. , 1995 .

[35]  M. Manley,et al.  Hydroxylapatite Coatings in Orthopaedic Surgery , 1993 .

[36]  L. Anderson,et al.  Hernias through donor sites for iliac-bone grafts. , 1983, The Journal of bone and joint surgery. American volume.

[37]  G. Friedlaender,et al.  Immune responses to osteochondral allografts. Current knowledge and future directions. , 1983, Clinical orthopaedics and related research.

[38]  Sunghuen Kim,et al.  A Report of Two Cases , 2008 .

[39]  Pamela Habibovic,et al.  Osteoinductive biomaterials—properties and relevance in bone repair , 2007, Journal of tissue engineering and regenerative medicine.

[40]  H. Kurita,et al.  Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. , 2002, Biomaterials.

[41]  U. Ripamonti Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. , 1996, Biomaterials.

[42]  M. Chapman,et al.  Morbidity at bone graft donor sites. , 1989, Journal of orthopaedic trauma.

[43]  C. Klein,et al.  Bonding of bone to apatite-coated implants. , 1988, The Journal of bone and joint surgery. British volume.