Simultaneous measurement of complementary observables with compressive sensing.

The more information a measurement provides about a quantum system's position statistics, the less information a subsequent measurement can provide about the system's momentum statistics. This information trade-off is embodied in the entropic formulation of the uncertainty principle. Traditionally, uncertainly relations correspond to resolution limits; increasing a detector's position sensitivity decreases its momentum sensitivity and vice versa. However, this is not required in general; for example, position information can instead be extracted at the cost of noise in momentum. Using random, partial projections in position followed by strong measurements in momentum, we efficiently determine the transverse-position and transverse-momentum distributions of an unknown optical field with a single set of measurements. The momentum distribution is directly imaged, while the position distribution is recovered using compressive sensing. At no point do we violate uncertainty relations; rather, we economize the use of information we obtain.

[1]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[2]  J. Goodman Introduction to Fourier optics , 1969 .

[3]  W. Mccrea,et al.  XXII.—Random Paths in Two and Three Dimensions. , 1940 .

[4]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[5]  A. Jordan,et al.  Colloquium : Understanding quantum weak values: Basics and applications , 2013, 1305.7154.

[6]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[7]  J. Lundeen,et al.  Direct measurement of the quantum wavefunction , 2011, Nature.

[8]  Hall,et al.  Information Exclusion Principle for Complementary Observables. , 1995, Physical review letters.

[9]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[10]  R. Shack,et al.  History and principles of Shack-Hartmann wavefront sensing. , 2001, Journal of refractive surgery.

[11]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[12]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.

[13]  M. Padgett,et al.  Fast full-color computational imaging with single-pixel detectors. , 2013, Optics express.

[14]  A. Lee Swindlehurst,et al.  IEEE Journal of Selected Topics in Signal Processing Inaugural Issue: [editor-in-chief's message] , 2007, J. Sel. Topics Signal Processing.

[15]  Simon Haykin,et al.  Selected topics in signal processing , 1989 .

[16]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[17]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[18]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[19]  M. Padgett,et al.  3D Computational Imaging with Single-Pixel Detectors , 2013, Science.

[20]  R. Kosut,et al.  Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.

[21]  J. Romberg,et al.  Imaging via Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[22]  Andrew G. Glen,et al.  APPL , 2001 .

[23]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[24]  N. Bohr The Quantum Postulate and the Recent Development of Atomic Theory , 1928, Nature.

[25]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[26]  Yin Zhang,et al.  Compressive sensing for 3d data processing tasks: applications, models and algorithms , 2011 .

[27]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[28]  Aephraim M. Steinberg,et al.  Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer , 2011, Science.

[29]  Martin Vetterli,et al.  Compressive Sampling [From the Guest Editors] , 2008, IEEE Signal Processing Magazine.

[30]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[31]  O. Katz,et al.  Compressive ghost imaging , 2009, 0905.0321.

[32]  John C. Howell,et al.  Efficient high-dimensional entanglement imaging with a compressive sensing, double-pixel camera , 2012, 1212.5530.

[33]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[34]  L. Goddard Information Theory , 1962, Nature.