Geographical patterns in the body‐size structure of European lake fish assemblages along abiotic and biotic gradients

Our aim was to document geographical patterns of variation in the body‐size structure of European lake fish assemblages along abiotic gradients, and any differences in fish assemblage structure. We hypothesized that patterns in the body‐size structure of entire lake fish assemblages are primarily temperature driven and consistent with the dominant pattern of the temperature–size rule, which suggests a decrease in adult body size with increasing developmental temperature for many ectothermic species.

[1]  C. Delire,et al.  Ecological emergence of thermal clines in body size , 2013, Global change biology.

[2]  M. Gevrey,et al.  Development of a fish-based index to assess the eutrophication status of European lakes , 2013, Hydrobiologia.

[3]  E. Jeppesen,et al.  Fish diversity in European lakes: geographical factors dominate over anthropogenic pressures , 2013 .

[4]  J. Ohlberger Climate warming and ectotherm body size – from individual physiology to community ecology , 2013 .

[5]  Florian D. Schneider,et al.  Climate change in size-structured ecosystems , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  E. Jeppesen,et al.  Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes , 2012, Hydrobiologia.

[7]  Wenyun Zuo,et al.  A general model for effects of temperature on ectotherm ontogenetic growth and development , 2012, Proceedings of the Royal Society B: Biological Sciences.

[8]  David Griffiths Body size distributions in North American freshwater fish: large-scale factors , 2012 .

[9]  E. Jeppesen,et al.  Meta-analysis Shows a Consistent and Strong Latitudinal Pattern in Fish Omnivory Across Ecosystems , 2012, Ecosystems.

[10]  T. Mehner,et al.  Size spectra of lake fish assemblages: responses along gradients of general environmental factors and intensity of lake‐use , 2011 .

[11]  M. Hooten,et al.  On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. , 2011, Ecology.

[12]  M. Kearney,et al.  Declining body size: a third universal response to warming? , 2011, Trends in ecology & evolution.

[13]  Owen L. Petchey,et al.  Body-size distributions and size-spectra: universal indicators of ecological status? , 2010, Biology Letters.

[14]  Erik Jeppesen,et al.  Impacts of climate warming on lake fish community structure and potential effects on ecosystem function , 2010, Hydrobiologia.

[15]  U. Sommer,et al.  Global warming benefits the small in aquatic ecosystems , 2009, Proceedings of the National Academy of Sciences.

[16]  T. Nõges Relationships between morphometry, geographic location and water quality parameters of European lakes , 2009, Hydrobiologia.

[17]  J. Kubečka,et al.  Size selectivity of standardized multimesh gillnets in sampling coarse European species , 2009 .

[18]  J Elith,et al.  A working guide to boosted regression trees. , 2008, The Journal of animal ecology.

[19]  Kevin J. Gaston,et al.  Ecogeographical rules: elements of a synthesis , 2008 .

[20]  E. Jeppesen,et al.  Lake depth and geographical position modify lake fish assemblages of the European ‘Central Plains’ ecoregion , 2007 .

[21]  S. Ernest,et al.  Relationships between body size and abundance in ecology. , 2007, Trends in ecology & evolution.

[22]  N. Lamouroux,et al.  Fish community comparisons along environmental gradients in lakes of France and north‐east USA , 2007 .

[23]  N. Lamouroux,et al.  Large‐scale intraspecific variation in life‐history traits of European freshwater fish , 2006 .

[24]  D. Pont,et al.  Patterns in species richness and endemism of European freshwater fish , 2006 .

[25]  David Griffiths Pattern and process in the ecological biogeography of European freshwater fish. , 2006, The Journal of animal ecology.

[26]  M. A. Olalla‐Tárraga,et al.  Broad‐scale patterns of body size in squamate reptiles of Europe and North America , 2006 .

[27]  R. Walters,et al.  The Temperature‐Size Rule in Ectotherms: May a General Explanation Exist after All? , 2006, The American Naturalist.

[28]  S. Morley,et al.  From cells to colonies: at what levels of body organization does the ‘temperature‐size rule’ apply? , 2006, Evolution & development.

[29]  C. Magnhagen,et al.  LATITUDINAL VARIATION IN LIFE-HISTORY TRAITS IN EURASIAN PERCH , 2005 .

[30]  T. Mehner,et al.  Habitat‐specific fishing revealed distinct indicator species in German lowland lake fish communities , 2005 .

[31]  Hanna Tuomisto,et al.  DISSECTING THE SPATIAL STRUCTURE OF ECOLOGICAL DATA AT MULTIPLE SCALES , 2004 .

[32]  M. Emmerson,et al.  Predator–prey body size, interaction strength and the stability of a real food web , 2004 .

[33]  J. Knouft Latitudinal variation in the shape of the species body size distribution: an analysis using freshwater fishes , 2004, Oecologia.

[34]  Nina Jonsson,et al.  Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories , 2003 .

[35]  A. Vila-Gispert,et al.  Life-history Patterns of 25 species from European Freshwater Fish Communities , 2002, Environmental Biology of Fishes.

[36]  M. Hulme,et al.  A high-resolution data set of surface climate over global land areas , 2002 .

[37]  J. Friedman Stochastic gradient boosting , 2002 .

[38]  M. Appelberg,et al.  Size structure of benthic freshwater fish communities in relation to environmental gradients , 2000 .

[39]  Erik Jeppesen,et al.  Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient , 2000 .

[40]  M. Hassall,et al.  Life‐history responses of British grasshoppers (Orthoptera: Acrididae) to temperature change , 1998 .

[41]  M. Appelberg,et al.  Development and intercalibration of methods in nordic freshwater fish monitoring , 1995 .

[42]  K. Rose,et al.  Patterns of Life-History Diversification in North American Fishes: implications for Population Regulation , 1992 .

[43]  H. Sægrov,et al.  Piscivory by brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) in Norwegian lakes , 1992 .

[44]  W. Calder Size, Function, and Life History , 1988 .

[45]  D. Pauly On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks , 1980 .

[46]  J. Magnuson,et al.  Temperature as an Ecological Resource , 1979 .

[47]  C. C. Lindsey BODY SIZES OF POIKILOTHERM VERTEBRATES AT DIFFERENT LATITUDES , 1966, Evolution; international journal of organic evolution.

[48]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[49]  J. Delong Experimental demonstration of a ‘rate–size’ trade-off governing body size optimization , 2012 .

[50]  R. Law,et al.  How does abundance scale with body size in coupled size-structured food webs? , 2009, The Journal of animal ecology.

[51]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[52]  G. De’ath Boosted trees for ecological modeling and prediction. , 2007, Ecology.

[53]  D. Reuman,et al.  Estimating Relative Energy Fluxes Using the Food Web, Species Abundance, and Body Size , 2005 .

[54]  T. Mehner,et al.  Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human‐use intensity , 2005 .

[55]  R. Peters,et al.  Relationships between body size and some life history parameters , 2004, Oecologia.

[56]  D. Atkinson Temperature and organism size-A biological law for ectotherms? Advances in Ecological Research 25: 1 , 1994 .

[57]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .