Heuristic methods for the p-center problem

On traite par des methodes heuristiques le probleme du p-centre dans n'importe quel espace metrique. A cause de la complexite de ce probleme, une variete d'algorithmes heuristiques a ete proposee dans differents cas, generalement en localisation en reseaux et dans le plan. La majorite d'entre eux est reliee a quelques classes de methodes pouvant etre utilisees pour ce probleme dans n'importe quel systeme metrique. Ici, on presente l'ensemble de ces methodes et on propose aussi une methode nouvelle, qui est une 2-approximation heuristique pour quelques cas particuliers de ce probleme

[1]  Z. Drezner On the rectangular p‐center problem , 1987 .

[2]  Nimrod Megiddo,et al.  On the Complexity of Some Common Geometric Location Problems , 1984, SIAM J. Comput..

[3]  S. L. HAKIMIt AN ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS. , 1979 .

[4]  Edward Minieka A polynomial time algorithm for finding the absolute center of a network , 1981, Networks.

[5]  R. L. Francis,et al.  A Minimax Location Problem on a Network , 1974 .

[6]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[7]  H. Späth,et al.  Computational experiences with the exchange method , 1977 .

[8]  Zvi Drezner,et al.  The p-Centre Problem—Heuristic and Optimal Algorithms , 1984 .

[9]  C. D. T. Watson-Gandy,et al.  The multi-facility min-max Weber problem , 1984 .

[10]  Leon Cooper,et al.  Heuristic Methods for Location-Allocation Problems , 1964 .

[11]  T. Ibaraki,et al.  The Computational Complexity of the m -Center Problems on the Plane , 1981 .

[12]  R. Chandrasekaran,et al.  A note on the m-center problem with rectilinear distances , 1988 .

[13]  Zvi Drezner,et al.  Single Facility lp-Distance Minimax Location , 1980, SIAM J. Algebraic Discret. Methods.

[14]  James Vijay,et al.  An Algorithm for the p-Center Problem in the Plane , 1985, Transp. Sci..

[15]  Ján Plesník,et al.  A heuristic for the p-center problems in graphs , 1987, Discret. Appl. Math..

[16]  Horst A. Eiselt,et al.  A Note on p-Center Problems in the Plane , 1986, Transp. Sci..

[17]  A. Frieze,et al.  A simple heuristic for the p-centre problem , 1985 .

[18]  Leon Cooper,et al.  N‐DIMENSIONAL LOCATION MODELS: AN APPLICATION TO CLUSTER ANALYSIS , 1973 .

[19]  S. Hakimi,et al.  On p -Centers in Networks , 1978 .

[20]  Polly Bart,et al.  Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph , 1968, Oper. Res..

[21]  M. Rao,et al.  The m-Center Problem: Minimax Facility Location , 1977 .

[22]  B. Pelegrín A general approach to the 1-center problem , 1986 .

[23]  Christakis Charalambous Technical Note - Extension of the Elzinga-Hearn Algorithm to the Weighted Case , 1982, Oper. Res..

[24]  George L. Nemhauser,et al.  Easy and hard bottleneck location problems , 1979, Discret. Appl. Math..