Heuristic methods for the p-center problem
暂无分享,去创建一个
[1] Z. Drezner. On the rectangular p‐center problem , 1987 .
[2] Nimrod Megiddo,et al. On the Complexity of Some Common Geometric Location Problems , 1984, SIAM J. Comput..
[3] S. L. HAKIMIt. AN ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS. , 1979 .
[4] Edward Minieka. A polynomial time algorithm for finding the absolute center of a network , 1981, Networks.
[5] R. L. Francis,et al. A Minimax Location Problem on a Network , 1974 .
[6] David B. Shmoys,et al. A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..
[7] H. Späth,et al. Computational experiences with the exchange method , 1977 .
[8] Zvi Drezner,et al. The p-Centre Problem—Heuristic and Optimal Algorithms , 1984 .
[9] C. D. T. Watson-Gandy,et al. The multi-facility min-max Weber problem , 1984 .
[10] Leon Cooper,et al. Heuristic Methods for Location-Allocation Problems , 1964 .
[11] T. Ibaraki,et al. The Computational Complexity of the m -Center Problems on the Plane , 1981 .
[12] R. Chandrasekaran,et al. A note on the m-center problem with rectilinear distances , 1988 .
[13] Zvi Drezner,et al. Single Facility lp-Distance Minimax Location , 1980, SIAM J. Algebraic Discret. Methods.
[14] James Vijay,et al. An Algorithm for the p-Center Problem in the Plane , 1985, Transp. Sci..
[15] Ján Plesník,et al. A heuristic for the p-center problems in graphs , 1987, Discret. Appl. Math..
[16] Horst A. Eiselt,et al. A Note on p-Center Problems in the Plane , 1986, Transp. Sci..
[17] A. Frieze,et al. A simple heuristic for the p-centre problem , 1985 .
[18] Leon Cooper,et al. N‐DIMENSIONAL LOCATION MODELS: AN APPLICATION TO CLUSTER ANALYSIS , 1973 .
[19] S. Hakimi,et al. On p -Centers in Networks , 1978 .
[20] Polly Bart,et al. Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph , 1968, Oper. Res..
[21] M. Rao,et al. The m-Center Problem: Minimax Facility Location , 1977 .
[22] B. Pelegrín. A general approach to the 1-center problem , 1986 .
[23] Christakis Charalambous. Technical Note - Extension of the Elzinga-Hearn Algorithm to the Weighted Case , 1982, Oper. Res..
[24] George L. Nemhauser,et al. Easy and hard bottleneck location problems , 1979, Discret. Appl. Math..