IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis

Nuclear factor κB (NF-κB) is involved in multiple skeletal muscle disorders, but how it functions in differentiation remains elusive given that both anti- and promyogenic activities have been described. In this study, we resolve this by showing that myogenesis is controlled by opposing NF-κB signaling pathways. We find that myogenesis is enhanced in MyoD-expressing fibroblasts deficient in classical pathway components RelA/p65, inhibitor of κB kinase β (IKKβ), or IKKγ. Similar increases occur in myoblasts lacking RelA/p65 or IKKβ, and muscles from RelA/p65 or IKKβ mutant mice also contain higher fiber numbers. Moreover, we show that during differentiation, classical NF-κB signaling decreases, whereas the induction of alternative members IKKα, RelB, and p52 occurs late in myogenesis. Myotube formation does not require alternative signaling, but it is important for myotube maintenance in response to metabolic stress. Furthermore, overexpression or knockdown of IKKα regulates mitochondrial content and function, suggesting that alternative signaling stimulates mitochondrial biogenesis. Together, these data reveal a unique IKK/NF-κB signaling switch that functions to both inhibit differentiation and promote myotube homeostasis.

[1]  Yi-Ping Li,et al.  TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK , 2007 .

[2]  Huating Wang,et al.  NF-κB Regulation of YY1 Inhibits Skeletal Myogenesis through Transcriptional Silencing of Myofibrillar Genes , 2007, Molecular and Cellular Biology.

[3]  K. L. Gardner,et al.  Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. , 2007, The Journal of clinical investigation.

[4]  T. Luedde,et al.  Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. , 2006, The Journal of clinical investigation.

[5]  Swarnali Acharyya,et al.  Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. , 2005, Cancer cell.

[6]  D. Seldin,et al.  RelB/p52 NF-κB Complexes Rescue an Early Delay in Mammary Gland Development in Transgenic Mice with Targeted Superrepressor IκB-α Expression and Promote Carcinogenesis of the Mammary Gland , 2005, Molecular and Cellular Biology.

[7]  A. Weiner,et al.  Software L 2 L : a simple tool for discovering the hidden significance in microarray expression data , 2005 .

[8]  D. Guttridge,et al.  RelA/p65 Regulation of IκBβ , 2005, Molecular and Cellular Biology.

[9]  Georg Schett,et al.  IκB kinase (IKK)β, but not IKKα, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss , 2005, The Journal of experimental medicine.

[10]  S. Kandarian,et al.  Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. , 2004, The Journal of clinical investigation.

[11]  B. Aronow,et al.  Activation of IKKα target genes depends on recognition of specific κB binding sites by RelB:p52 dimers , 2004 .

[12]  M. Mayo,et al.  SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. , 2004, Molecular cell.

[13]  W. Frontera,et al.  IKKβ/NF-κB Activation Causes Severe Muscle Wasting in Mice , 2004, Cell.

[14]  S. Ghosh,et al.  Signaling to NF-kappaB. , 2004, Genes & development.

[15]  Jeffrey S. Damrauer,et al.  Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. , 2004, The Journal of clinical investigation.

[16]  C. Moyes,et al.  Bioenergetic remodeling during cellular differentiation: changes in cytochrome c oxidase regulation do not affect the metabolic phenotype. , 2004, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[17]  M. Karin,et al.  IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis , 2004, Nature.

[18]  P. Muñoz-Cánoves,et al.  p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6. , 2004, Molecular biology of the cell.

[19]  D. Grossman,et al.  Rapid induction of mitochondrial events and caspase-independent apoptosis in Survivin-targeted melanoma cells , 2004, Oncogene.

[20]  A. Baldwin,et al.  NF-κB mediates inhibition of mesenchymal cell differentiation through a posttranscriptional gene silencing mechanism , 2003 .

[21]  Brian D. Strahl,et al.  A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression , 2003, Nature.

[22]  R. Gaynor,et al.  Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression , 2003, Nature.

[23]  M. Karin,et al.  IKKβ Is Required for Peripheral B Cell Survival and Proliferation1 , 2003, The Journal of Immunology.

[24]  G. Vita,et al.  Activation of nuclear factor-κB in inflammatory myopathies and Duchenne muscular dystrophy , 2003, Neurology.

[25]  Ashok Kumar,et al.  Mechanical stress activates the nuclear factor‐kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  D. Green,et al.  The Lymphotoxin-β Receptor Induces Different Patterns of Gene Expression via Two NF-κB Pathways , 2002 .

[27]  David Baltimore,et al.  Two Pathways to NF-κB , 2002 .

[28]  H. Blau,et al.  RIP2, a Checkpoint in Myogenic Differentiation , 2002, Molecular and Cellular Biology.

[29]  M. Benito,et al.  Insulin restores differentiation of Ras-transformed C2C12 myoblasts by inducing NF-κB through an AKT/P70S6K/p38-MAPK pathway , 2002, Oncogene.

[30]  M. Karin,et al.  Missing Pieces in the NF-κB Puzzle , 2002, Cell.

[31]  Michael Karin,et al.  Activation by IKKα of a Second, Evolutionary Conserved, NF-κB Signaling Pathway , 2001, Science.

[32]  E. Wouters,et al.  Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor‐κΒ , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[33]  M. Karin,et al.  IKKα controls formation of the epidermis independently of NF-κB , 2001, Nature.

[34]  K. Chien,et al.  Nuclear Factor κB-inducing Kinase and IκB Kinase-α Signal Skeletal Muscle Cell Differentiation* , 2001, The Journal of Biological Chemistry.

[35]  R. Henry,et al.  Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle. , 2001, American journal of physiology. Regulatory, integrative and comparative physiology.

[36]  E. Harhaj,et al.  NF-κB-Inducing Kinase Regulates the Processing of NF-κB2 p100 , 2001 .

[37]  R. Scarpulla,et al.  Mitochondrial DNA Instability and Peri-Implantation Lethality Associated with Targeted Disruption of Nuclear Respiratory Factor 1 in Mice , 2001, Molecular and Cellular Biology.

[38]  C. Y. Wang,et al.  NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. , 2000, Science.

[39]  T. Mak,et al.  Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. , 2000, Genes & development.

[40]  M. Rudnicki,et al.  The molecular regulation of myogenesis , 2000, Clinical genetics.

[41]  E. Olson,et al.  MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. , 1999, Current opinion in cell biology.

[42]  Yukio Nakamura,et al.  Genetic approaches in mice to understand Rel/NF-κB and IκB function: transgenics and knockouts , 1999, Oncogene.

[43]  Chris Albanese,et al.  NF-κB Controls Cell Growth and Differentiation through Transcriptional Regulation of Cyclin D1 , 1999, Molecular and Cellular Biology.

[44]  M. Palacín,et al.  Insulin-like Growth Factor-II, Phosphatidylinositol 3-Kinase, Nuclear Factor-κB and Inducible Nitric-oxide Synthase Define a Common Myogenic Signaling Pathway* , 1999, The Journal of Biological Chemistry.

[45]  A. Lassar,et al.  pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation , 1999, Current Biology.

[46]  J. Beckmann,et al.  Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IκBα/NF-κB pathway in limb-girdle muscular dystrophy type 2A , 1999, Nature Medicine.

[47]  S. Akira,et al.  Limb and skin abnormalities in mice lacking IKKalpha. , 1999, Science.

[48]  D. Goeddel,et al.  Embryonic Lethality, Liver Degeneration, and Impaired NF-κB Activation in IKK-β-Deficient Mice , 1999 .

[49]  L. Old,et al.  Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Rudnicki,et al.  Reduced Differentiation Potential of Primary MyoD−/− Myogenic Cells Derived from Adult Skeletal Muscle , 1999, The Journal of cell biology.

[51]  G. Ghosh,et al.  The Crystal Structure of the IκBα/NF-κB Complex Reveals Mechanisms of NF-κB Inactivation , 1998, Cell.

[52]  S. Ghosh,et al.  Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. , 1998, Molecular cell.

[53]  J. Caamaño,et al.  Osteopetrosis in mice lacking NF-κB1 and NF-κB2 , 1997, Nature Medicine.

[54]  O. Mathieu-Costello,et al.  Mitochondrial biogenesis during cellular differentiation. , 1997, The American journal of physiology.

[55]  S. Tapscott,et al.  Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. , 1997, Genes & development.

[56]  A. Salminen,et al.  Down-regulation of transcription factors AP-1, Sp-1, and NF-kappa B precedes myocyte differentiation. , 1996, Biochemical and biophysical research communications.

[57]  D. Baltimore,et al.  Both multiorgan inflammation and myeloid hyperplasia in RelB-deficient mice are T cell dependent. , 1996, Journal of immunology.

[58]  D. Baltimore,et al.  Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. , 1995, Genes & development.

[59]  David Baltimore,et al.  Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB , 1995, Nature.

[60]  M. Czisch,et al.  Structural and functional analysis of the NF-kappa B p65 C terminus. An acidic and modular transactivation domain with the potential to adopt an alpha-helical conformation. , 1994, The Journal of biological chemistry.

[61]  H. Blau,et al.  Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy , 1994, The Journal of cell biology.

[62]  H. Weintraub,et al.  Expression of a single transfected cDNA converts fibroblasts to myoblasts , 1987, Cell.

[63]  Yi-Ping Li,et al.  TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. , 2007, American journal of physiology. Cell physiology.

[64]  D. Seldin,et al.  RelB/p52 NF-kappaB complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor IkappaB-alpha expression and promote carcinogenesis of the mammary gland. , 2005, Molecular and cellular biology.

[65]  M. Karin,et al.  IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis. , 2004, Nature.

[66]  S. Kandarian,et al.  Disruption of either the Nfkb 1 or the Bcl 3 gene inhibits skeletal muscle atrophy , 2004 .

[67]  W. Frontera,et al.  IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. , 2004, Cell.

[68]  B. Aronow,et al.  Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. , 2004, The EMBO journal.

[69]  B. Strahl,et al.  A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. , 2003, Nature.

[70]  M. Karin,et al.  IKK beta is required for peripheral B cell survival and proliferation. , 2003, Journal of immunology.

[71]  C. Emerson,et al.  Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. , 2002, Annual review of cell and developmental biology.

[72]  D. Green,et al.  The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. , 2002, Immunity.

[73]  David Baltimore,et al.  Two pathways to NF-kappaB. , 2002, Molecular cell.

[74]  M. Karin,et al.  Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. , 2001, Science.

[75]  K. Chien,et al.  Nuclear factor kappa B-inducing kinase and Ikappa B kinase-alpha signal skeletal muscle cell differentiation. , 2001, The Journal of biological chemistry.

[76]  M. Karin,et al.  IKKalpha controls formation of the epidermis independently of NF-kappaB. , 2001, Nature.

[77]  E. Harhaj,et al.  NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. , 2001, Molecular cell.

[78]  S. Gerondakis,et al.  Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts. , 1999, Oncogene.

[79]  M. Karin How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. , 1999, Oncogene.

[80]  E. Olson,et al.  MEF 2 : a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation , 1999 .

[81]  D. Goeddel,et al.  Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. , 1999, Immunity.

[82]  T. Leary,et al.  Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality , 1999 .

[83]  G. Ghosh,et al.  The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. , 1998, Cell.

[84]  J. Caamaño,et al.  Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. , 1997, Nature medicine.

[85]  D. Baltimore,et al.  Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. , 1995, Nature.