Towards scalable and controlled synthesis of metal–organic framework materials using continuous flow reactors

Metal–organic frameworks have emerged as one of the most diverse new families of materials in the past few years. Their hybrid structures, combinations of inorganic and organic moieties, give a wide range of complex architectures with resultant properties that are suitable for numerous important fields, including porosity for molecular sieving and sensing, heterogeneous catalysis, drug delivery, and energy storage. If applications of these materials are to be realised then scalable synthesis is required, taking laboratory batch reactions towards industrial production. Continuous flow reactors offer the most versatile method for scaling their solvothermal synthesis, with the largest range of materials accessible, in high yield, and with control over crystal form.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  Bambang Veriansyah,et al.  Metal nanoparticle synthesis using supercritical alcohol , 2009 .

[3]  Krista S. Walton,et al.  Kinetics study and crystallization process design for scale‐up of UiO‐66‐NH2 synthesis , 2013 .

[4]  Edward Lester,et al.  A versatile flow visualisation technique for quantifying mixing in a binary system: application to continuous supercritical water hydrothermal synthesis (SWHS) , 2004 .

[5]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[6]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[7]  Kazuhiro Oiwa,et al.  Single‐molecule investigation of the interference between kinesin, tau and MAP2c , 2002, The EMBO journal.

[8]  François-Xavier Coudert,et al.  A pressure-amplifying framework material with negative gas adsorption transitions , 2016, Nature.

[9]  Edward Lester,et al.  Instant MOFs: continuous synthesis of metal-organic frameworks by rapid solvent mixing. , 2012, Chemical communications.

[10]  Ryan P. Lively,et al.  Defects in Metal-Organic Frameworks: Challenge or Opportunity? , 2015, The journal of physical chemistry letters.

[11]  N. Stock,et al.  Flow-synthesis of carboxylate and phosphonate based metal-organic frameworks under non-solvothermal reaction conditions. , 2015, Dalton transactions.

[12]  Steven M. Block,et al.  Kinesin Moves by an Asymmetric Hand-OverHand Mechanism , 2003 .

[13]  A. Matzger,et al.  MOF@MOF: microporous core-shell architectures. , 2009, Chemical communications.

[14]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[15]  J. Howard,et al.  Kinesin Takes One 8-nm Step for Each ATP That It Hydrolyzes* , 1999, The Journal of Biological Chemistry.

[16]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[17]  R. Banerjee,et al.  Selective interfacial synthesis of metal-organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation. , 2015, Nanoscale.

[18]  A. Hudspeth,et al.  Movement of microtubules by single kinesin molecules , 1989, Nature.

[19]  Aron Walsh,et al.  Electronic origins of photocatalytic activity in d0 metal organic frameworks , 2016, Scientific Reports.

[20]  M. Schröder Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis , 2010 .

[21]  S. Kaskel,et al.  “The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications” , 2017 .

[22]  Josef Hormes,et al.  Microfluidic synthesis of nanomaterials. , 2008, Small.

[23]  R A Milligan,et al.  Kinesin follows the microtubule's protofilament axis , 1993, The Journal of cell biology.

[24]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[25]  Arne Seitz,et al.  Processive movement of single kinesins on crowded microtubules visualized using quantum dots , 2006, The EMBO journal.

[26]  Kyriakos C. Stylianou,et al.  An Adaptable Peptide-Based Porous Material , 2010, Science.

[27]  S. Kitagawa,et al.  Chemistry and application of flexible porous coordination polymers , 2008, Science and technology of advanced materials.

[28]  J. Beeg,et al.  Kinesin-driven sorting machine on large-scale microtubule arrays , 2005, IEEE Transactions on Advanced Packaging.

[29]  W. Marsden I and J , 2012 .

[30]  David Farrusseng,et al.  Metal-Organic Frameworks: Applications from Catalysis to Gas Storage , 2011 .

[31]  Keiji Nakagawa,et al.  A block PCP crystal: anisotropic hybridization of porous coordination polymers by face-selective epitaxial growth. , 2009, Chemical communications.

[32]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  J. Eckert,et al.  Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M(2)(dhtp) (CPO-27-M; M = Ni, Co, Mg). , 2010, Chemical communications.

[35]  Kunio Arai,et al.  Rapid and Continuous Hydrothermal Crystallization of Metal Oxide Particles in Supercritical Water , 1992 .

[36]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[37]  Cees Dekker,et al.  Molecular Sorting by Electrical Steering of Microtubules in Kinesin-Coated Channels , 2006, Science.

[38]  E. Lester,et al.  Large-scale continuous hydrothermal production and activation of ZIF-8. , 2015, Chemical communications.

[39]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[40]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[41]  Siddharth V. Patwardhan,et al.  Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals , 2016 .

[42]  C. Asbury Kinesin: world's tiniest biped. , 2005, Current opinion in cell biology.

[43]  R. Cross,et al.  What kinesin does at roadblocks: the coordination mechanism for molecular walking , 2004, The EMBO journal.

[44]  Jonathon Howard,et al.  The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends , 2006, Nature.

[45]  Lu Zhou,et al.  Impact of Mixing for the Production of CuO Nanoparticles in Supercritical Hydrothermal Synthesis , 2014 .

[46]  Tony McNally,et al.  Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03217a Click here for additional data file. , 2015, Chemical science.

[47]  J. Spudich,et al.  Assays for actin sliding movement over myosin-coated surfaces. , 1991, Methods in enzymology.

[48]  F. D. Miles,et al.  Structures and Formulæ of the Prussian Blues and Related Compounds , 1936, Nature.

[49]  Qisheng Huo,et al.  Chemistry of Zeolites and Related Porous Materials , 2007 .

[50]  Motonobu Goto,et al.  Green materials synthesis with supercritical water , 2011 .

[51]  C. Serre,et al.  Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH).(O2C-C6H4-CO2).(HO2C-C6H4-CO2H)x. , 2002, Chemical communications.

[52]  Ilias Belharouak,et al.  Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes , 2011 .

[53]  Stefan Kaskel,et al.  Continuous microreactor synthesis of ZIF-8 with high space–time-yield and tunable particle size , 2016 .

[54]  S. Hindocha “The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications” , 2017 .

[55]  M. Poliakoff,et al.  Synthesis of metal–organic frameworks by continuous flow , 2014 .

[56]  J. R. Johnson,et al.  Interfacial microfluidic processing of metal-organic framework hollow fiber membranes , 2014, Science.

[57]  D Nicolau,et al.  A novel biosensor for mercuric ions based on motor proteins. , 2005, Biosensors & bioelectronics.

[58]  Christopher J. Tighe,et al.  Scaling-up a Confined Jet Reactor for the Continuous Hydrothermal Manufacture of Nanomaterials , 2013 .

[59]  S. Kitagawa,et al.  Dynamic porous properties of coordination polymers inspired by hydrogen bonds. , 2005, Chemical Society reviews.

[60]  Ryan P. Lively,et al.  Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. , 2014, ChemSusChem.

[61]  J. V. van Bokhoven,et al.  Continuous-Flow Microwave Synthesis of Metal-Organic Frameworks: A Highly Efficient Method for Large-Scale Production. , 2016, Chemistry.

[62]  Lars Öhrström,et al.  Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013) , 2013 .

[63]  Beatriz Seoane,et al.  Accelerating the controlled synthesis of metal-organic frameworks by a microfluidic approach: a nanoliter continuous reactor. , 2013, ACS applied materials & interfaces.

[64]  Miki Hirabayashi,et al.  Malachite green‐conjugated microtubules as mobile bioprobes selective for malachite green aptamers with capturing/releasing ability , 2006, Biotechnology and bioengineering.

[65]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[66]  Christian Serre,et al.  Nanostructured metal–organic frameworks and their bio-related applications , 2016 .

[67]  Bartolomeo Civalleri,et al.  Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory , 2011 .

[68]  Matthew R. Hill,et al.  Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks , 2014, Scientific Reports.

[69]  P. Brophy,et al.  KIF1D is a fast non‐processive kinesin that demonstrates novel K‐loop‐dependent mechanochemistry , 2001, The EMBO journal.

[70]  Cyril Aymonier,et al.  Fast and continuous processing of a new sub-micronic lanthanide-based metal–organic framework , 2014 .

[71]  Release of isolated single kinesin molecules from microtubules. , 1998, Biochemistry.

[72]  Ram Dixit,et al.  Differential Regulation of Dynein and Kinesin Motor Proteins by Tau , 2008, Science.

[73]  R. Vale,et al.  Kinesin Walks Hand-Over-Hand , 2004, Science.

[74]  Susan B. Rivera,et al.  Interactions between cargo-carrying biomolecular shuttles , 2006 .

[75]  Lars Montelius,et al.  In vitro sliding of actin filaments labelled with single quantum dots. , 2004, Biochemical and biophysical research communications.

[76]  Omar M. Yaghi,et al.  The role of metal–organic frameworks in a carbon-neutral energy cycle , 2016, Nature Energy.

[77]  Rajamani Krishna,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013, Science.

[78]  C. Téllez,et al.  High selectivity ZIF-93 hollow fiber membranes for gas separation. , 2015, Chemical communications.

[79]  C. Téllez,et al.  Metal-organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis , 2015 .

[80]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[81]  Alan G. Ryder,et al.  Bench- and pilot-scale continuous-flow hydrothermal production of barium strontium titanate nanopowders , 2016 .

[82]  A. Aykaç,et al.  A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles , 2015, Scientific Reports.