Efficient Implicit Time-Marching Methods Using a Newton-Krylov Algorithm

The numerical behavior of two implicit time-marching methods is investigated in solving two-dimensional unsteady compressible flows. The two methods are the second-order multistep backward differencing formula and the fourth-order multistage explicit first stage, single-diagonal coefficient, diagonally implicit Runge-Kutta scheme. A Newton-Krylov method is used to solve the nonlinear problem arising from the implicit temporal discretization. The methods are studied for two test cases: laminar flow over a cylinder and turbulent flow over a NACA0012 airfoil with a blunt trailing edge. Parameter studies show that the subiteration termination criterion plays a major role in the efficiency of time-marching methods. Efficiency studies show that when only modest global accuracy is needed, the second-order method is preferred. The fourth-order method is more efficient when high accuracy is required. The Newton-Krylov method is seen to be an efficient choice for implicit time-accurate computations.

[1]  L. Christopher,et al.  Efficiency and Accuracy of Time-Accurate Turbulent Navier-Stokes Computations , 1995 .

[2]  M. Rumpfkeil,et al.  The optimal control of unsteady flows with a discrete adjoint method , 2010 .

[3]  C. Merkle,et al.  Dual time-stepping and preconditioning for unsteady computations , 1995 .

[4]  David W. Zingg,et al.  A Runge-Kutta-Newton-Krylov Algorithm for Fourth-Order Implicit Time Marching Applied to Unsteady Flows , 2004 .

[5]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[6]  David W. Zingg,et al.  A General Framework for the Optimal Control of Unsteady Flows with Applications , 2007 .

[7]  D. W. Zingg,et al.  Grid studies for thin-layer Navier-Stokes computations of airfoil flowfields , 1992 .

[8]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[9]  David W. Zingg,et al.  Efficient Newton-Krylov Solver for Aerodynamic Computations , 1998 .

[10]  David W. Zingg,et al.  Higher-order spatial discretization for turbulent aerodynamic computations , 2001 .

[11]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[12]  Dimitri J. Mavriplis,et al.  Higher-order Time Integration Schemes for Aeroelastic Applications on Unstructured Meshes , 2006 .

[13]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[14]  D. Zingg,et al.  Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-Stokes Equations , 2002 .

[15]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[16]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[17]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[18]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[19]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[20]  Dimitri J. Mavriplis,et al.  Higher order time integration schemes for the unsteady Navier-Stokes equations on unstructured meshes , 2002 .

[21]  T. Pulliam Time accuracy and the use of implicit methods. [in CFD , 1993 .

[22]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[23]  D. Zingg,et al.  On artificial dissipation models for viscous airfoil computations , 1996 .

[24]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[25]  “Fundamentals of Computational Fluid Dynamics". Lomax, H.; Pulliam, T.H. and Zingg, D.W., Springer-Verlag, Berlin, 2001, ISBN 3-540-41607-2 , 2002 .

[26]  Amaresh Dalal,et al.  A Finite-Volume Method for Navier-Stokes Equations on Unstructured Meshes , 2008 .

[27]  D. Zingg,et al.  Aerodynamic Computations Using the Convective-Upstream Split-Pressure Scheme with Local Preconditioning , 2000 .

[28]  Thomas H. Pulliam,et al.  Comparison of Several Spatial Discretizations for the Navier-Stokes Equations , 1999 .

[29]  Hester Bijl,et al.  Iterative methods for unsteady flow computations using implicit Runge-Kutta integration schemes , 2006 .

[30]  Hester Bijl,et al.  Iterative solution techniques for unsteady flow computations using higher order time integration schemes , 2005 .

[31]  T. Pulliam Efficient solution methods for the Navier-Stokes equations , 1986 .

[32]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[33]  D. W. Zingg,et al.  Improvements to a Dual-Time-Stepping Method for Computing Unsteady Flows , 1997 .

[34]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[35]  Hester Bijl,et al.  Implicit Time Integration Schemes for the Unsteady Compressible Navier–Stokes Equations: Laminar Flow , 2002 .

[36]  P. Roache Fundamentals of computational fluid dynamics , 1998 .

[37]  J. Butcher Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[38]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .