Determination of Soot Formation Rate from Laminar Smoke Point Measurements

In order to develop soot formation models for fuels in fires, a global Arrhenius equation for soot formation rate has been studied in terms of the mixture fraction, the fuel concentration in the fuel supply stream, the local gas density and the gas temperature. A procedure relying on modelling and experimental data determines the parameters for the soot formation rate by exploiting the physics and results in laminar smoke point flames corresponding to a given fuel. The main advantages of such an approach are its simplicity and applicability to fuels (solids or liquids) in fires as long as their smoke point height is known, whereas most of the previous studies focused on pure hydrocarbons.

[1]  Ho-Soog Chang Prediction of Soot Formation in Laminar Opposed Diffusion Flame with Detailed and Reduced Reaction Mechanisms , 2004 .

[2]  Guan Heng Yeoh,et al.  Contribution of soot particles on global radiative heat transfer in a two-compartment fire , 2004 .

[3]  J. B. Moss,et al.  Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel , 2007 .

[4]  Michael G. Littman,et al.  Comparative study of soot formation on the centerline of axisymmetric laminar diffusion flames: Fuel and temperature effects , 1987 .

[5]  Nicholas A. Dembsey,et al.  A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames , 2005 .

[6]  Michael A. Delichatsios,et al.  Heat fluxes and flame heights in façades from fires in enclosures of varying geometry , 2007 .

[7]  S. Senkan,et al.  Formation of polycyclic aromatic hydrocarbons in an atmospheric pressure ethylene diffusion flame , 1999 .

[8]  Philip J. Smith,et al.  Modeling Effects of Soot and Turbulence-Radiation Coupling on Radiative Transfer in Turbulent Gaseous Combustion , 1995 .

[9]  Alexei V. Saveliev,et al.  Soot and NO formation in methane-oxygen enriched diffusion flames , 2001 .

[10]  G. H. Markstein,et al.  Correlations for smoke points and radiant emission of laminar hydrocarbon diffusion flames , 1989 .

[11]  H. Im,et al.  Transient soot dynamics in turbulent nonpremixed ethylene–air counterflow flames , 2007 .

[12]  Ümit Özgür Köylü,et al.  Carbon Monoxide and Soot Emissions from Liquid-Fueled Buoyant Turbulent Diffusion Flames , 1991 .

[13]  M. Borjini,et al.  Modeling of radiative heat transfer in 3D complex boiler with non-gray sooting media , 2007 .

[14]  K. M. Leung,et al.  A simplified reaction mechanism for soot formation in nonpremixed flames , 1991 .

[15]  J. B. Moss,et al.  Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions , 1995 .

[16]  尚弘 島影 National Institute of Standards and Technologyにおける超伝導研究及び生活 , 2001 .

[17]  M. Delichatsios,et al.  A Phenomenological Model for Smoke-Point and Soot Formation in Laminar Flames , 1994 .

[18]  R. Skaggs A study of carbon monoxide in a series of laminar ethylene / air diffusion flames using tunable diode laser absorption spectroscopy , 1995 .

[19]  M. Frenklach,et al.  A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames , 1997 .

[20]  I. Glassman,et al.  Soot Formation in Laminar Diffusion Flame , 1993 .

[21]  J. B. Moss,et al.  Smoke production, radiation heat transfer and fire growth in a liquid-fuelled compartment fire , 2007 .

[22]  H. Jander,et al.  Soot formation in a laminar diffusion flame , 1981 .

[23]  Robert W. Bilger,et al.  Modeling soot formation in turbulent methane–air jet diffusion flames , 2000 .

[24]  Detailed Chemistry Spray Combustion Model for the KIVA Code , 2001 .

[25]  Robert A. Fletcher,et al.  The evolution of soot precursor particles in a diffusion flame , 1998 .

[26]  Haukur Ingason,et al.  Flame heat transfer in storage geometries , 1998 .