Modal analysis of active flexible multibody systems

When performing modal analyses of active flexible multibody systems, both controller effects and flexible body dynamics should be included in a multidisciplinary system model. This paper deals with the theory of solving the closed-loop eigenvalue problem for active flexible multibody systems with multiple-input multiple-output proportional-integral-derivative (PID) type feedback controllers and multiple degrees of freedom finite element models. Modal analyses are performed on both a simple and complex active flexible multibody system in order to illustrate the difference between current modal analysis method for such systems and the proposed theory derived in this paper.

[1]  Peter Avitabile Experimental modal analysis : A simple non-mathematical presentation , 2001 .

[2]  Brian Schwarz,et al.  Experimental modal analysis , 1999 .

[3]  C. I. Tseng,et al.  Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach , 1990 .

[4]  W. Thomson Theory of vibration with applications , 1965 .

[5]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[6]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[7]  Terje Rølvåg,et al.  Modal Analysis of Lumped Flexible Active Systems (Part 1) , 2008 .

[8]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[9]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[10]  Tore Hägglund,et al.  The future of PID control , 2000 .

[11]  Randall J. Allemang,et al.  THE MODAL ASSURANCE CRITERION–TWENTY YEARS OF USE AND ABUSE , 2003 .

[12]  Peter Avitabile,et al.  Modal and operating characterization of an Optical telescope , 2001 .

[13]  D. Inman Vibration control , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[14]  Werner Bernzen,et al.  Active Vibration Control of Flexible Robots Using Virtual Spring-damper Systems , 1999, J. Intell. Robotic Syst..

[15]  Kenneth A. Ramsey Experimental Modal Analysis, Structural Modifications and FEM Analysis on a Desktop Computer , 1983 .

[16]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[17]  Blake Hannaford,et al.  Stability guaranteed control: time domain passivity approach , 2004, IEEE Trans. Control. Syst. Technol..

[18]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[19]  M. F. Golnaraghi,et al.  Active Structural Vibration Control: A Review , 2003 .

[20]  Neville Hogan,et al.  Controller design in the physical domain , 1991 .

[21]  Kouhei Ohnishi,et al.  Motion control for advanced mechatronics , 1996 .

[22]  K. Åström,et al.  Revisiting the Ziegler-Nichols step response method for PID control , 2004 .

[23]  Senthil V. Gopinathan,et al.  Finite element simulation of smart structures using an optimal output feedback controller for vibration and noise control , 1999 .

[24]  Mehdi Ahmadian,et al.  Orthogonal Eigenstructure Control with Non-collocated Actuators and Sensors , 2009 .

[25]  Amr M. Baz,et al.  Active Control of Periodic Structures , 2000, Adaptive Structures and Material Systems.