Long term potentiation, but not depression, in interlamellar hippocampus CA1

[1]  Cha-Min Tang,et al.  A Postsynaptic Role for Short-Term Neuronal Facilitation in Dendritic Spines , 2016, Front. Cell. Neurosci..

[2]  Ole Paulsen,et al.  Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus , 2016, Cerebral cortex.

[3]  Athanassios G. Siapas,et al.  Membrane Potential Dynamics of CA1 Pyramidal Neurons during Hippocampal Ripples in Awake Mice , 2016, Neuron.

[4]  Sven Jahnke,et al.  A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples , 2015, The Journal of Neuroscience.

[5]  Cha-Min Tang,et al.  The Shaping of Two Distinct Dendritic Spikes by A-Type Voltage-Gated K+ Channels , 2015, Front. Cell. Neurosci..

[6]  Cha-Min Tang,et al.  Interlamellar CA1 network in the hippocampus , 2014, Proceedings of the National Academy of Sciences.

[7]  G. Collingridge,et al.  Microtubule-associated protein tau is essential for long-term depression in the hippocampus , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  A. Kirkwood,et al.  Integrity of mGluR-LTD in the Associative/Commissural Inputs to CA3 Correlates with Successful Aging in Rats , 2013, The Journal of Neuroscience.

[9]  Denise Manahan-Vaughan,et al.  The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing , 2013, Front. Synaptic Neurosci..

[10]  D. Manahan‐Vaughan,et al.  Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning , 2013, Neuropharmacology.

[11]  Sunggu Yang,et al.  Aberrant light directly impairs mood and learning through melanopsin-expressing neurons , 2012, Nature.

[12]  R. Malenka,et al.  NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). , 2012, Cold Spring Harbor perspectives in biology.

[13]  H. Lüders,et al.  Requirement of longitudinal synchrony of epileptiform discharges in the hippocampus for seizure generation: a pilot study. , 2012, Journal of neurosurgery.

[14]  Valentina Emiliani,et al.  Three-dimensional holographic photostimulation of the dendritic arbor , 2011, Journal of neural engineering.

[15]  Ashok Kumar Long-Term Potentiation at CA3–CA1 Hippocampal Synapses with Special Emphasis on Aging, Disease, and Stress , 2011, Front. Ag. Neurosci..

[16]  G. Collingridge,et al.  Aβ1–42 inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β , 2011, Nature Neuroscience.

[17]  G. Collingridge,et al.  Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95 , 2010, Nature Neuroscience.

[18]  G. Collingridge,et al.  Long-term depression in the CNS , 2010, Nature Reviews Neuroscience.

[19]  Christian Lüscher,et al.  Group 1 mGluR-Dependent Synaptic Long-Term Depression: Mechanisms and Implications for Circuitry and Disease , 2010, Neuron.

[20]  U. Gerber,et al.  Activation Conditions for the Induction of Metabotropic Glutamate Receptor-Dependent Long-Term Depression in Hippocampal CA1 Pyramidal Cells , 2010, The Journal of Neuroscience.

[21]  D. Manahan‐Vaughan,et al.  Frequency Facilitation at Mossy Fiber–CA3 Synapses of Freely Behaving Rats Contributes to the Induction of Persistent LTD via an Adenosine-A1 Receptor-Regulated Mechanism , 2009, Cerebral cortex.

[22]  G. Collingridge,et al.  Metabotropic Glutamate Receptor-Mediated LTD Involves Two Interacting Ca2+ Sensors, NCS-1 and PICK1 , 2008, Neuron.

[23]  Richard L. Huganir,et al.  Elongation Factor 2 and Fragile X Mental Retardation Protein Control the Dynamic Translation of Arc/Arg3.1 Essential for mGluR-LTD , 2008, Neuron.

[24]  D. Manahan‐Vaughan,et al.  Beta-adrenoreceptors comprise a critical element in learning-facilitated long-term plasticity. , 2008, Cerebral cortex.

[25]  D. Manahan‐Vaughan,et al.  Metabotropic glutamate receptor 1 (mGluR1) and 5 (mGluR5) regulate late phases of LTP and LTD in the hippocampal CA1 region in vitro , 2008, The European journal of neuroscience.

[26]  H. Sugano,et al.  Hippocampal transection for treatment of left temporal lobe epilepsy with preservation of verbal memory , 2006, Journal of Clinical Neuroscience.

[27]  Z. Bashir,et al.  Experience-dependent modification of mechanisms of long-term depression , 2006, Nature Neuroscience.

[28]  D. Manahan‐Vaughan,et al.  The metabotropic glutamate receptor, mGluR5, is a key determinant of good and bad spatial learning performance and hippocampal synaptic plasticity. , 2005, Cerebral cortex.

[29]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[30]  F. Dudek,et al.  Increased excitatory synaptic activity and local connectivity of hippocampal CA1 pyramidal cells in rats with kainate-induced epilepsy. , 2004, Journal of neurophysiology.

[31]  Denise Manahan-Vaughan,et al.  Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Manahan‐Vaughan,et al.  Regulation by metabotropic glutamate receptor 5 of LTP in the dentate gyrus of freely moving rats: relevance for learning and memory formation. , 2004, Cerebral cortex.

[33]  P. Andersen,et al.  Organization of the hippocampal output , 1973, Experimental Brain Research.

[34]  T. Bliss,et al.  Lamellar organization of hippocampal excitatory pathways , 1971, Experimental Brain Research.

[35]  M. Bear,et al.  Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. , 2000, Science.

[36]  C. Baird,et al.  The pilot study. , 2000, Orthopedic nursing.

[37]  Robert E. Hampson,et al.  Distribution of spatial and nonspatial information in dorsal hippocampus , 1999, Nature.

[38]  Christophe Bernard,et al.  Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy , 1999, The Journal of comparative neurology.

[39]  E. Tulving,et al.  Episodic and declarative memory: Role of the hippocampus , 1998, Hippocampus.

[40]  Z. Bashir,et al.  NMDA Receptor-dependent and -independent Long-term Depression in the CA1 Region of the Adult Rat Hippocampus In Vitro , 1997, Neuropharmacology.

[41]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[42]  J. Lacaille,et al.  Axonal Sprouting of CA1 Pyramidal Cells in Hyperexcitable Hippocampal Slices of Kainate‐treated Rats , 1996, The European journal of neuroscience.

[43]  M. Bear,et al.  Long-term depression in hippocampus. , 1996, Annual review of neuroscience.

[44]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[45]  D. Amaral,et al.  Organization of CA1 projections to the subiculum: A PHA‐L analysis in the rat , 1991, Hippocampus.

[46]  Nobuaki Tamamaki,et al.  Disposition of the slab‐like modules formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus , 1990, The Journal of comparative neurology.

[47]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[48]  R M Pitkin,et al.  An embarrassment of riches. , 1989, Obstetrics and gynecology.

[49]  T. Teyler Long-term potentiation and memory. , 1987, International journal of neurology.

[50]  L. Voronin,et al.  Long-term potentiation in the hippocampus , 1983, Neuroscience.

[51]  T. Teyler,et al.  A monosynaptic fiber track studied in vitro: Evidence of a hippocampal CA1 associational system? , 1977, Brain Research Bulletin.

[52]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[53]  H. Bagger,et al.  Non-uniform blood flow in the left ventricular wall of dogs measured by the Xe-133 wash-out technique. , 1969, Acta physiologica Scandinavica.