Transformations to reduce boundary bias in kernel density estimation
暂无分享,去创建一个
[1] David Ruppert,et al. Bias reduction in kernel density estimation by smoothed empirical transformations , 1994 .
[2] M. Wand,et al. CORRECTING FOR KURTOSIS IN DENSITY ESTIMATION , 1992 .
[3] Richard L. Smith. Estimating tails of probability distributions , 1987 .
[4] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[5] H. Müller. Weighted Local Regression and Kernel Methods for Nonparametric Curve Fitting , 1987 .
[6] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[7] Constance Van Eeden,et al. Mean integrated squared error of kernel estimators when the density and its derivative are not necessarily continuous , 1985 .
[8] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[9] Peter Hall,et al. On Estimating the Endpoint of a Distribution , 1982 .
[10] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[11] James Stephen Marron,et al. Transformations in Density Estimation , 1991 .
[12] Daren B. H. Cline,et al. Kernel Estimation of Densities with Discontinuities or Discontinuous Derivatives , 1991 .
[13] J. Marron,et al. Equivalence of Smoothing Parameter Selectors in Density and Intensity Estimation , 1988 .
[14] Eugene F. Schuster,et al. Incorporating support constraints into nonparametric estimators of densities , 1985 .
[15] R. John,et al. Boundary modification for kernel regression , 1984 .