The Complexity of the Counting Constraint Satisfaction Problem

The Counting Constraint Satisfaction Problem (${\rm \#CSP}(\mathcal{H})$) over a finite relational structure $\mathcal{H}$ can be expressed as follows: given a relational structure $\mathcal{G}$ over the same vocabulary, determine the number of homomorphisms from $\mathcal{G}$ to $\mathcal{H}$. In this paper we characterize relational structures $\mathcal{H}$ for which ${\rm \#CSP}(\mathcal{H})$ can be solved in polynomial time and prove that for all other structures the problem is #P-complete.

[1]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[2]  Andrei A. Bulatov,et al.  A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..

[3]  Libor Barto,et al.  Graphs, polymorphisms and the complexity of homomorphism problems , 2008, STOC '08.

[4]  R. McKenzie,et al.  Commutator theory for congruence modular varieties , 1989 .

[5]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[6]  J. Lebowitz,et al.  Phase Transitions in Binary Lattice Gases , 1971 .

[7]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[8]  László Lovász,et al.  The rank of connection matrices and the dimension of graph algebras , 2004, Eur. J. Comb..

[9]  Catherine S. Greenhill The complexity of counting colourings and independent sets in sparse graphs and hypergraphs , 2000, computational complexity.

[10]  Martin E. Dyer,et al.  On Approximately Counting Colorings of Small Degree Graphs , 1999, SIAM J. Comput..

[11]  Maria J. Serna,et al.  Recent Results on Parameterized H-Colorings , 2001, Graphs, Morphisms and Statistical Physics.

[12]  Maria J. Serna,et al.  The Complexity of Restrictive H-Coloring , 2002, WG.

[13]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[14]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[15]  J. Steif,et al.  Non-uniqueness of measures of maximal entropy for subshifts of finite type , 1994, Ergodic Theory and Dynamical Systems.

[16]  Andrei A. Bulatov,et al.  The complexity of partition functions , 2005, Theor. Comput. Sci..

[17]  Martin E. Dyer,et al.  The Relative Complexity of Approximate Counting Problems , 2000, Algorithmica.

[18]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[19]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[20]  J. Scott Provan,et al.  The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected , 1983, SIAM J. Comput..

[21]  G. Grätzer General Lattice Theory , 1978 .

[22]  Josep Díaz Cort,et al.  Counting list h-colorings and variants , 2001 .

[23]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[24]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[25]  Catherine S. Greenhill,et al.  The complexity of counting graph homomorphisms , 2000 .

[26]  N. Linial Hard enumeration problems in geometry and combinatorics , 1986 .

[27]  Andrei A. Bulatov,et al.  Towards a dichotomy theorem for the counting constraint satisfaction problem , 2007, Inf. Comput..

[28]  Marc Gyssens,et al.  How to Determine the Expressive Power of Constraints , 1999, Constraints.

[29]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[30]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[31]  Jin-Yi Cai,et al.  Holographic Algorithms by Fibonacci Gates and Holographic Reductions for Hardness , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Harry B. Hunt,et al.  The Complexity of Planar Counting Problems , 1998, SIAM J. Comput..

[33]  Maria J. Serna,et al.  Counting H-colorings of partial k-trees , 2001, Theor. Comput. Sci..

[34]  Maria J. Serna,et al.  Complexity issues on bounded restrictive H-coloring , 2007, Discret. Math..

[35]  L. Lovász Operations with structures , 1967 .

[36]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[37]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[38]  George Gratzer,et al.  Universal Algebra , 1979 .

[39]  Gustav Nordh,et al.  The Complexity of Counting Solutions to Systems of Equations over Finite Semigroups , 2004, COCOON.

[40]  Graham R. Brightwell,et al.  Graph Homomorphisms and Phase Transitions , 1999, J. Comb. Theory, Ser. B.

[41]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[42]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[43]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[44]  Jaroslav Nesetril,et al.  Counting List Homomorphisms and Graphs with Bounded Degrees , 2001, Graphs, Morphisms and Statistical Physics.

[45]  Martin E. Dyer,et al.  On Counting Independent Sets in Sparse Graphs , 2002, SIAM J. Comput..

[46]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[47]  Martin E. Dyer,et al.  On Counting Homomorphisms to Directed Acyclic Graphs , 2006, ICALP.

[48]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[49]  Pawel M. Idziak,et al.  Tractability and learnability arising from algebras with few subpowers , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[50]  Peter Jeavons,et al.  Constraint Satisfaction Problems and Finite Algebras , 2000, ICALP.

[51]  Pascal Tesson,et al.  Systems of Equations over Finite Semigroups and the #CSP Dichotomy Conjecture , 2006, MFCS.