SRB measures for Anosov actions

Given a general Anosov R action on a closed manifold, we study properties of certain invariant measures that have recently been introduced in [GBGHW20] using the theory of Ruelle-Taylor resonances. We show that these measures share many properties of Sinai-Ruelle-Bowen measures for general Anosov flows such as smooth disintegrations along the unstable foliation, positive Lebesgue measure basins of attraction and a Bowen formula in terms of periodic orbits. Finally we show that if the action in the positive Weyl chamber is transitive, the measure is unique and has full support. Introduction On a closed, smooth Riemannian manifold (M, g) (normalized with volume 1) we consider a locally free abelian action τ : Rκ → Diffeo(M). Assume that τ is Anosov, and denote by W ⊂ Rκ the maximal cone of tranversally hyperbolic elements (see Section 1.1 for a precise definition of all these terms). In [GBGHW20] it was proved that there exists a Radon probability measure μ, called the physical measure, such that for every function f ∈ C0(M) and every open proper subcone C ⊂ W, μ(f) = lim T→+∞ 1 |CT | ∫

[1]  On the Support of Pollicott–Ruelle Resonanant States for Anosov Flows , 2015, 1511.08338.

[2]  Akshay Venkatesh,et al.  Distribution of periodic torus orbits and Duke's theorem for cubic fields , 2007, Annals of Mathematics.

[3]  A. Katok,et al.  First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity , 1994 .

[4]  Gerhard Keller,et al.  Ruelle?Perron?Frobenius spectrum for Anosov maps , 2002 .

[5]  Rufus Bowen,et al.  Some systems with unique equilibrium states , 1974, Mathematical systems theory.

[6]  V. Baladi,et al.  Anisotropic hölder and sobolev spaces for hyperbolic diffeomorphisms , 2005, math/0505015.

[7]  Gerhard Knieper The uniqueness of the maximal measure for geodesic flows on symmetric spaces of higher rank , 2005 .

[8]  S. Dyatlov,et al.  Mathematical Theory of Scattering Resonances , 2019, Graduate Studies in Mathematics.

[9]  S. Dyatlov,et al.  Dynamical zeta functions for Anosov flows via microlocal analysis , 2013, 1306.4203.

[10]  Sakinah,et al.  Vol. , 2020, New Medit.

[11]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis , 1983 .

[12]  Eric A Sobie,et al.  An Introduction to Dynamical Systems , 2011, Science Signaling.

[13]  M. Pollicott,et al.  Anosov flows and dynamical zeta functions , 2012, 1203.0904.

[14]  J. Hilgert,et al.  Ruelle-Taylor resonances of Anosov actions , 2020, 2007.14275.

[15]  Y. Sinai,et al.  Markov partitions and C-diffeomorphisms , 2020, Hamiltonian Dynamical Systems.

[16]  M. Shub,et al.  The Ω-stability theorem for flows , 1970 .

[17]  N. V. Dang,et al.  The Fried conjecture in small dimensions , 2018, Inventiones mathematicae.

[18]  A. Katok,et al.  NONUNIFORM MEASURE RIGIDITY , 2008, 0803.3094.

[19]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms Part I: Characterization of measures satisfying Pesin's entropy formula , 1985 .

[20]  Carlangelo Liverani,et al.  Banach spaces adapted to Anosov systems , 2005, Ergodic Theory and Dynamical Systems.

[21]  David Ruelle,et al.  A MEASURE ASSOCIATED WITH AXIOM-A ATTRACTORS. , 1976 .

[22]  Anatole Katok,et al.  Invariant measures for higher-rank hyperbolic abelian actions , 1996, Ergodic Theory and Dynamical Systems.

[23]  Federico Rodriguez-Hertz,et al.  Equilibrium States for Center Isometries , 2021, 2103.07323.

[24]  Y. Benoist,et al.  Flots d’Anosov à distributions stable et instable différentiables , 1990 .

[25]  Carlangelo Liverani,et al.  Smooth Anosov flows: Correlation spectra and stability , 2007 .

[26]  R. Bowen Ergodic theory of Axiom A flows , 1975 .

[27]  R. Bowen THE EQUIDISTRIBUTION OF CLOSED GEODESICS. , 1972 .

[28]  Yonah Borns-Weil,et al.  Dynamical zeta functions in the nonorientable case , 2021, Nonlinearity.

[29]  E. Hewitt,et al.  On the fundamental ideas of measure theory , 1962 .

[30]  Boris Hasselblatt,et al.  Problems in dynamical systems and related topics , 2007 .

[31]  V. Baladi,et al.  Dynamical determinants and spectrum for hyperbolic diffeomorphisms , 2006, math/0606434.

[32]  R. Llave,et al.  Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems , 1992 .

[33]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[34]  Lai-Sang Young,et al.  Ergodic Theory of Differentiable Dynamical Systems , 1995 .

[35]  A. Katok,et al.  Invariant measures and the set of exceptions to Littlewood's conjecture , 2006, math/0612721.

[36]  On the Classification of Cartan Actions , 2004, math/0411236.

[37]  T. Bewley Extension of the Birkhoff and von Neumann ergodic theorems to semigroup actions , 1971 .

[38]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[39]  J. Sjöstrand,et al.  Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances , 2008, 0802.1780.

[40]  E. Lindenstrauss,et al.  On measures invariant under tori on quotients of semisimple groups , 2015 .

[41]  J. Sjöstrand,et al.  Upper Bound on the Density of Ruelle Resonances for Anosov Flows , 2010, 1003.0513.

[42]  Akshay Venkatesh,et al.  The distribution of periodic torus orbits on homogeneous spaces , 2006, math/0607815.

[43]  Disintegration into conditional measures : Rokhlin ’ s theorem , 2008 .

[44]  A Prime geodesic theorem for higher rank spaces , 2002, math/0208206.