Evaluation of three local descriptors on low resolution images for robot navigation

This paper presents an evaluation of the SIFT (Scale Invariant Feature Transform), Colour SIFT, and SURF (Speeded Up Robust Feature) descriptors on very low resolution images. The performance of the three descriptors are compared against each other on the precision and recall measures using ground truth correct matching data. Our experimental results show that both SIFT and Colour SIFT are more robust under changes of viewing angle and viewing distance but SURF is superior under changes of illumination and blurring. In terms of computation time, the SURF descriptors offer themselves as a good alternative to SIFT and CSIFT.

[1]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[2]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[3]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[4]  Andrew Zisserman,et al.  Scene Classification Using a Hybrid Generative/Discriminative Approach , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[6]  Gustavo Olague,et al.  Evolutionary learning of local descriptor operators for object recognition , 2009, GECCO.

[7]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[8]  Koen E. A. van de Sande,et al.  Evaluation of color descriptors for object and scene recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[10]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[11]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[14]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[16]  Hans P. Moravec Visual Mapping by a Robot Rover , 1979, IJCAI.

[17]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[18]  Francesca Odone,et al.  SVD-matching using SIFT features , 2006, Graph. Model..

[19]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[20]  Sung-Bae Cho,et al.  Context-Based Scene Recognition Using Bayesian Networks with Scale-Invariant Feature Transform , 2006, ACIVS.

[21]  Gertjan J. Burghouts,et al.  Performance evaluation of local colour invariants , 2009, Comput. Vis. Image Underst..