Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia.

BACKGROUND Vascular endothelial growth factor (VEGF) is a hypoxia-inducible direct angiogenic factor. Upregulation of VEGF is thought to mediate many of the angiogenic effects of growth factors that are not direct endothelial cell mitogens. Like VEGF, basic fibroblast growth factor (bFGF) is considered to induce angiogenesis by a direct effect on endothelial cells. This study investigated the possibility that bFGF may also act indirectly by regulating VEGF expression in vascular smooth muscle cells (VSMCs). METHODS AND RESULTS Incubation of confluent and quiescent cultures of rabbit VSMCs with bFGF caused a time- and concentration-dependent increase in steady-state levels of VEGF mRNA, as analyzed by Northern blot hybridization. Exposure of VSMCs to a threshold hypoxic stimulus (2.5% O2) caused a modest increase in VEGF mRNA levels. However, the combination of 2.5% O2 with bFGF had a marked synergistic effect. This effect was specific for VEGF as hypoxia did not enhance bFGF-induced expression of the proto-oncogene c-myc. Synergistic upregulation of VEGF mRNA expression also was observed between hypoxia and TGF-beta 1. CONCLUSIONS These results suggest that bFGF may promote angiogenesis both by a direct effect on endothelial cells and also indirectly by the upregulation of VEGF in VSMCs. The synergy demonstrated between hypoxia and either bFGF or TGF-beta 1 suggests that multiple diverse stimuli may interact via the upregulation of VEGF expression in VSMCs to amplify the angiogenic response.

[1]  D. Connolly,et al.  Vascular permeability factor, an endothelial cell mitogen related to PDGF. , 1989, Science.

[2]  J. Folkman,et al.  Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Sporn,et al.  Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Barger,et al.  Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. , 1984, The New England journal of medicine.

[5]  D. Gospodarowicz,et al.  Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Ross The pathogenesis of atherosclerosis: a perspective for the 1990s , 1993, Nature.

[7]  N. Ferrara,et al.  Molecular and biological properties of the vascular endothelial growth factor family of proteins. , 1992, Endocrine reviews.

[8]  G. Breier,et al.  Hypoxia and platelet‐derived growth factor‐BB synergistically upregulate the expression of vascular endothelial growth factor in vascular smooth muscle cells , 1995, FEBS letters.

[9]  D. Connolly,et al.  Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration , 1990, The Journal of experimental medicine.

[10]  Atsushi Namiki,et al.  Indirect Angiogenic Cytokines Upregulate VEGF and bFGF Gene Expression in Vascular Smooth Muscle Cells, Whereas Hypoxia Upregulates VEGF Expression Only , 1994 .

[11]  T. Maciag,et al.  The heparin-binding (fibroblast) growth factor family of proteins. , 1989, Annual review of biochemistry.

[12]  K. Alitalo,et al.  Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. , 1994, The Journal of biological chemistry.

[13]  E. Keshet,et al.  Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis , 1992, Nature.

[14]  R. Thompson,et al.  Mechanisms of angiogenesis. , 1987, Annual review of physiology.

[15]  C. Frelin,et al.  Hypoxia is a strong inducer of vascular endothelial growth factor mRNA expression in the heart. , 1993, Biochemical and biophysical research communications.

[16]  S. Moncada,et al.  Arterial wall hypoxia following thrombosis of the vasa vasorum is an initial lesion in atherosclerosis , 1991, European journal of clinical investigation.

[17]  K. Sueishi,et al.  Media conditioned by coculture of pericytes and endothelial cells under a hypoxic state stimulate in vitro angiogenesis. , 1994, Ophthalmic research.

[18]  J. Winer,et al.  The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. , 1991, Molecular endocrinology.

[19]  J. Fiddes,et al.  Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth , 1987, Nature.

[20]  C. Heldin,et al.  Platelet-derived growth factor is angiogenic in vivo. , 1992, Growth factors.

[21]  J. Fiddes,et al.  The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. , 1991, The Journal of biological chemistry.

[22]  D. Ingber,et al.  A heparin-binding angiogenic protein--basic fibroblast growth factor--is stored within basement membrane. , 1988, The American journal of pathology.

[23]  Georg Breier,et al.  Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo , 1992, Nature.

[24]  E. Keshet,et al.  Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. , 1994, Cardiovascular research.

[25]  J F Martin,et al.  Arterial intimal hyperplasia after occlusion of the adventitial vasa vasorum in the pig. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[26]  P. D’Amore,et al.  Capillary growth: a two-cell system. , 1992, Seminars in cancer biology.

[27]  E. Edelman,et al.  Biological and biochemical properties of fibroblast growth factors. Implications for the pathogenesis of atherosclerosis. , 1989, Arteriosclerosis.