Generalized radix representations and dynamical systems. I

SummaryWe are concerned with families of dynamical systems which are related to generalized radix representations. The properties of these dynamical systems lead to new results on the characterization of bases of Pisot number systems as well as canonical number systems.

[1]  William J. Gilbert Radix representations of quadratic fields , 1981 .

[2]  FROM NUMBER SYSTEMS TO SHIFT RADIX SYSTEMS , 2005 .

[3]  Shigeki Akiyama,et al.  On the boundary of self affine tilings generated by Pisot numbers , 2002 .

[4]  Cubic CNS polynomials, notes on a conjecture of W.J. Gilbert , 2003 .

[5]  S. Akiyama On a generalization of the radix representation-a survey , 2004 .

[6]  Shigeki Akiyama,et al.  Generalized radix representations and dynamical systems II , 2006 .

[7]  J. Thuswaldner,et al.  On the characterization of canonical number systems , 2004 .

[8]  W. Parry On theβ-expansions of real numbers , 1960 .

[9]  Randolph B. Tarrier,et al.  Groups , 1973, Algebra.

[10]  Donald E. Knuth,et al.  A imaginary number system , 1960, Commun. ACM.

[11]  K. Schmidt,et al.  On Periodic Expansions of Pisot Numbers and Salem Numbers , 1980 .

[12]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[13]  Walter Penney,et al.  A ``Binary'' System for Complex Numbers , 1965, JACM.

[14]  J. Thuswaldner,et al.  Digit systems in polynomial rings over finite fields , 2003 .

[15]  Béla Kovács Canonical number systems in algebraic number fields , 1981 .

[16]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[17]  Shigeki Akiyama,et al.  Cubic Pisot units with finite beta expansions , 2004 .

[18]  Andreas Stein,et al.  High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams , 2004 .

[19]  Shigeki Akiyama,et al.  On canonical number systems , 2002, Theor. Comput. Sci..

[20]  Attila Pethö On a polynomial transformation and its application to the construction of a public key cryptosystem , 1991 .

[21]  Boris Solomyak,et al.  Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.

[22]  Yoichiro Takahashi,et al.  Markov subshifts and realization of β-expansions , 1974 .

[23]  ELEMENTARY PROPERTIES OF CANONICAL NUMBER SYSTEMS IN QUADRATIC FIELDS , 1998 .

[24]  Hui Rao,et al.  A CERTAIN FINITENESS PROPERTY OF PISOT NUMBER SYSTEMS , 2004 .

[25]  I. Kátai,et al.  Canonical number systems in imaginary quadratic fields , 1981 .

[26]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .