An interval programming based approach for fully uncertain resource-constrained project scheduling problem considering project manager’s attitude toward risk

Öz In recent years, there has been a growing attention to model and solve resource-constrained project scheduling problem (RCPSP) under uncertain environments. In most of the real-life cases, project managers may face with many uncertainties in activity durations, resource availabilities, resource requirements of the activities, the earliest and latest finishing times of the activities etc. In addition to these input parameters, project schedule which represents the starting and/or completion times of the activities should also be considered as uncertain variables in such a fully uncertain environments where all of the project data are imprecise. Based on this motivation, this paper presents an interval programming based transformation approach to overcome fully uncertain nature of the problem. In detail, classical discrete-time binary integer programming model of the deterministic problem was extended by incorporating interval-valued parameters and decision variables. Then, fully uncertain RCPSP was transformed into the crisp equivalent form by making use of interval programming, interval ranking and interval arithmetic operations. In the proposed approach, interval arithmetic operations are performed by using supplementary information obtained from the project manager. Thus, the proposed approach is also able to take into account the project managers’ attitude toward risk and produces more acceptable and risk-free solutions. Finally, a real-life liquefied natural gas (LNG) storage tank construction project in a petroleum refinery is presented for testing its validity and practicality. The computational results have shown that more applicable and information efficient project schedules can be derived via the proposed approach according to the project manager’s attitude toward risk. Son yıllarda, belirsizlik altında kaynak kısıtlı proje çizelgeleme problemlerinin modellenmesi ve çözümüne, giderek artan bir ilgi olduğu görülmektedir. Gerçek hayat uygulamalarının birçoğunda, proje yöneticileri, aktivite süreleri, kaynak kapasiteleri, aktivitelerin kaynak gereksinimleri ve en erken/en geç bitiş zamanlarının kesin ve net bir şekilde belirlenememesinden ötürü, birçok belirsizlik ile karşı karşıya kalmaktadır. Tüm bu parametrelerin belirsizlik içerdiği ortamlarda, aktivitelerin başlangıç veya bitiş zamanları olarak tanımlanan karar değişkenleri de kesin ve net bir şekilde belirlenememekte olup belirsizlik içerecektir. Bu araştırma motivasyonu ile bu çalışmada, aralık programlama tabanlı bir yaklaşım önerilerek, tamamen belirsiz ortamlarda problemin çözümü gerçekleştirilmiştir. Daha ayrıntılı olarak, probleme ait klasik kesikli zamanlı ikili tamsayılı programlama modeli, aralık sayılar ile ifade edilen parametre ve karar değişkenleri kullanılarak genişletilmiştir. Daha sonra, tamamen belirsiz kaynak kısıtlı proje çizelgeleme problemine ait matematiksel formülasyon, aralık programlama, aralık sıralama ve aralık aritmetik operasyonlar yardımıyla, belirlilik altındaki klasik eşdeğer forma dönüştürülmüştür. Önerilen yaklaşımda, aralık aritmetik operasyonlar, proje yöneticisinden elde edilen ek bilgiler yardımıyla gerçekleştirilmiştir. Bu sayede, proje yöneticilerinin riske karşı tutumları dikkate alınabilmekte ve riskten bağımsız, kabul edilebilir çözümler elde edilebilmektedir. Son olarak, önerilen yaklaşımın geçerliliğinin ve uygulanabilirliğinin test edilebilmesi için, bir petrol rafinerisindeki sıvılaştırılmış doğal gaz tankına ait inşaat projesine yer verilmiştir. Elde edilen sonuçlar göstermektedir ki, önerilen yaklaşım ile proje yöneticisinin riske karşı tutumu doğrultusunda, uygulanabilir ve bilgi etkin çözümler üretilebilmektedir.

[1]  Qiang Fu,et al.  An interval multi-objective programming model for irrigation water allocation under uncertainty , 2018 .

[2]  Maribel Perez A Simulation Based Optimization Approach for Stochastic Resource Constrained Project Management with Milestones , 2015 .

[3]  Tapan Kumar Pal,et al.  On comparing interval numbers , 2000, Eur. J. Oper. Res..

[4]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[5]  Tapabrata Ray,et al.  Finding robust solutions for resource constrained project scheduling problems involving uncertainties , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[6]  Adil Baykasoglu,et al.  Constrained fuzzy arithmetic approach to fuzzy transportation problems with fuzzy decision variables , 2017, Expert Syst. Appl..

[7]  D. Malcolm,et al.  Application of a Technique for Research and Development Program Evaluation , 1959 .

[8]  Chung-Hsing Yeh,et al.  Resource-constrained project scheduling with fuzziness , 2001 .

[9]  Patrizia Beraldi,et al.  An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations , 2017 .

[10]  Juite Wang,et al.  A fuzzy project scheduling approach to minimize schedule risk for product development , 2002, Fuzzy Sets Syst..

[11]  Malek Masmoudi,et al.  Project scheduling under uncertainty using fuzzy modelling and solving techniques , 2013, Eng. Appl. Artif. Intell..

[12]  Majid Alipour,et al.  Fuzzy Resource Constraint Project Scheduling Problem Using CBO and CSS Algorithms , 2016 .

[13]  Patrizia Beraldi,et al.  A computational study of exact approaches for the adjustable robust resource-constrained project scheduling problem , 2018, Comput. Oper. Res..

[14]  Zhi Chen,et al.  Efficient priority rules for the stochastic resource-constrained project scheduling problem , 2018, Eur. J. Oper. Res..

[15]  Chung-Hsing Yeh,et al.  Fuzzy project scheduling , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[16]  Amir Yousefli A Fuzzy Ant Colony Approach to Fully Fuzzy Resource Constrained Project Scheduling Problem , 2017 .

[17]  Christian Artigues,et al.  Robust optimization for resource-constrained project scheduling with uncertain activity durations , 2011, Flexible Services and Manufacturing Journal.

[18]  Selçuk Kürşat İşleyen,et al.  Resource Constrained Project Scheduling with Stochastic Resources , 2018 .

[19]  Ching-Chih Tseng,et al.  Measuring schedule uncertainty for a stochastic resource-constrained project using scenario-based approach with utility-entropy decision model , 2016 .

[20]  Ario Ohsato,et al.  Fuzzy critical chain method for project scheduling under resource constraints and uncertainty , 2008 .

[21]  Stefan Creemers,et al.  The Preemptive Stochastic Resource-Constrained Project Scheduling Problem: An Efficient Globally Optimal Solution Procedure , 2016 .

[22]  Ruhul A. Sarker,et al.  Resource constrained project scheduling with uncertain activity durations , 2017, Comput. Ind. Eng..

[23]  Andrzej Jaszkiewicz,et al.  Fuzzy project scheduling system for software development , 1994 .

[24]  George J. Klir,et al.  On constrained fuzzy arithmetic , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[25]  Jiuping Xu,et al.  A fuzzy random resource-constrained scheduling model with multiple projects and its application to a working procedure in a large-scale water conservancy and hydropower construction project , 2012, J. Sched..

[26]  Adil Baykasoglu,et al.  A direct solution approach based on constrained fuzzy arithmetic and metaheuristic for fuzzy transportation problems , 2019, Soft Comput..

[27]  Margarita Knyazeva,et al.  Resource-constrained Project Scheduling Approach Under Fuzzy Conditions , 2015 .

[28]  W. H. Ip,et al.  Genetic Local Search for Resource-Constrained Project Scheduling under Uncertainty , 2007 .

[29]  Weldon A. Lodwick,et al.  Constrained Interval Arithmetic , 1999 .

[30]  Tarun Bhaskar,et al.  A heuristic method for RCPSP with fuzzy activity times , 2011, Eur. J. Oper. Res..

[31]  Salim Rostami,et al.  New strategies for stochastic resource-constrained project scheduling , 2017, Journal of Scheduling.

[32]  Roman Slowinski,et al.  Fuzzy priority heuristics for project scheduling , 1996, Fuzzy Sets Syst..

[33]  L. Atymtayeva,et al.  A Fuzzy Linear Programming Approach for Resource-Constrained Project Scheduling , 2015 .

[34]  Parham Azimi,et al.  A new fuzzy multi-objective multi-mode resource-constrained project scheduling model , 2017, Int. J. Math. Oper. Res..

[35]  Linet Özdamar,et al.  Uncertainty Modelling in Software Development Projects (With Case Study) , 2001, Ann. Oper. Res..

[36]  Zhe Zhang A MODM Bi-level Model with Fuzzy Random Coefficients for Resource-Constrained Project Scheduling Problems , 2014, 2014 Seventh International Joint Conference on Computational Sciences and Optimization.

[37]  Hend Dawood,et al.  Theories of Interval Arithmetic: Mathematical Foundations and Applications , 2011 .

[38]  Hu Huang,et al.  Chance-Constrained Model for RCPSP with Uncertain Durations , 2015 .

[39]  Cengiz Kahraman,et al.  Fuzzy resource‐constrained project scheduling using taboo search algorithm , 2012, Int. J. Intell. Syst..

[40]  Etienne E. Kerre,et al.  Uncertainty Modeling in Knowledge Engineering and Decision Making: Proceedings of the 10th International FLINS Conference , 2012 .

[41]  Lianying Zhang,et al.  Fuzzy flexible resource constrained project scheduling based on genetic algorithm , 2014 .

[42]  Cengiz Kahraman,et al.  Resource-constrained project scheduling problem with multiple execution modes and fuzzy/crisp activity durations , 2014, J. Intell. Fuzzy Syst..

[43]  Lu Chen,et al.  Preemption resource-constrained project scheduling problems with fuzzy random duration and resource availabilities , 2016 .

[44]  K. Eshghi,et al.  A Resource-Constrained Project Scheduling Problem with Fuzzy Random Duration , 2010 .

[45]  A. Nagoor Gani,et al.  A New Operation on Triangular Fuzzy Number for Solving Fuzzy Linear Programming Problem , 2012 .

[46]  Haitao Li,et al.  Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming , 2015, Eur. J. Oper. Res..

[47]  Wenyi Zeng,et al.  Novel ranking method of interval numbers based on the Boolean matrix , 2018, Soft Comput..

[48]  Murat Paşa Uysal An empirical study in software engineering: the effects of project-based and project-supported methods on product and academic achievements , 2018 .

[49]  George J. Klir,et al.  Fuzzy arithmetic with requisite constraints , 1997, Fuzzy Sets Syst..

[50]  Juite Wang,et al.  A fuzzy robust scheduling approach for product development projects , 2004, Eur. J. Oper. Res..

[51]  Jiuping Xu,et al.  Multimode Resource-Constrained Multiple Project Scheduling Problem under Fuzzy Random Environment and Its Application to a Large Scale Hydropower Construction Project , 2014, TheScientificWorldJournal.

[52]  Zhongliang Yue,et al.  An extended TOPSIS for determining weights of decision makers with interval numbers , 2011, Knowl. Based Syst..

[53]  Wei Huang,et al.  Fuzzy resource-constrained project scheduling problem for software development , 2010, Wuhan University Journal of Natural Sciences.

[54]  Tamer Eren,et al.  Selecting of Monorail projects with analytic hierarchy process and 0-1 goal programming methods in Ankara , 2017 .

[55]  Roel Leus,et al.  New competitive results for the stochastic resource-constrained project scheduling problem: exploring the benefits of pre-processing , 2011, J. Sched..

[56]  George J. Klir,et al.  Constrained fuzzy arithmetic: Basic questions and some answers , 1998, Soft Comput..

[57]  Zeshui Xu,et al.  On multi-period multi-attribute decision making , 2008, Knowl. Based Syst..

[58]  A. Alan B. Pritsker,et al.  Multiproject Scheduling with Limited Resources , 1968 .

[59]  Debjani Chakraborty,et al.  Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming , 2001, Fuzzy Sets Syst..

[60]  W.A. Lodwick,et al.  A comparison of interval analysis using constraint interval arithmetic and fuzzy interval analysis using gradual numbers , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[61]  Jiuping Xu,et al.  Multiproject Resources Allocation Model under Fuzzy Random Environment and Its Application to Industrial Equipment Installation Engineering , 2013, J. Appl. Math..