Advancing the Open Modeling Interface (OpenMI) for integrated water resources modeling

Abstract The use of existing component-based modeling frameworks for integrated water resources modeling is currently hampered for some important use cases because they lack support for commonly used, topology-aware, spatiotemporal data structures. Additionally, existing frameworks are often accompanied by large software stacks with steep learning curves. Others lack specifications for deploying them on high performance, heterogeneous computing (HPC) infrastructure. This puts their use beyond the reach of many water resources modelers. In this paper, we describe new advances in component-based modeling using a framework called HydroCouple. This framework largely adopts the Open Modeling Interface (OpenMI) 2.0 interface definitions but demonstrates important advances for water resources modeling. HydroCouple explicitly defines standard and widely used geospatial data formats and provides interface definitions to support simulations on HPC infrastructure. In this paper, we illustrate how these advances can be used to develop efficient model components through a coupled urban stormwater modeling exercise.

[1]  Stephen C. Medeiros,et al.  Review of wetting and drying algorithms for numerical tidal flow models , 2013 .

[2]  K. Beven,et al.  SHE : towards a methodology for physically-based distributed forecasting in hydrology , 2007 .

[3]  Olaf David,et al.  The Object Modeling System , 2002 .

[4]  Roger Moore,et al.  An overview of the open modelling interface and environment (the OpenMI) , 2005 .

[5]  Sander Janssen,et al.  Evaluating OpenMI as a model integration platform across disciplines , 2013, Environ. Model. Softw..

[6]  Alexey A. Voinov,et al.  'Integronsters', integral and integrated modeling , 2013, Environ. Model. Softw..

[7]  Anthony M. Castronova,et al.  Comparing tightly coupled and loosely coupled paradigms for modeling hydrologic systems , 2009 .

[8]  Günter Blöschl,et al.  Ensemble prediction of floods – catchment non-linearity and forecast probabilities , 2007 .

[9]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[10]  Sander Janssen,et al.  Original papers: Linking models for assessing agricultural land use change , 2011 .

[11]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[12]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[13]  Peter Krause,et al.  Environmental modeling framework invasiveness: Analysis and implications , 2011, Environ. Model. Softw..

[14]  Robert M. Argent,et al.  Integrated models for environmental management: issues of process and design , 1999 .

[15]  Weiming Wu,et al.  Comparison of five depth-averaged 2-d turbulence models for river flows , 2004 .

[16]  Dmitri Kavetski,et al.  A unified approach for process‐based hydrologic modeling: 1. Modeling concept , 2015 .

[17]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[18]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[19]  Cecelia DeLuca,et al.  The architecture of the Earth System Modeling Framework , 2003, Computing in Science & Engineering.

[20]  Henrik Madsen,et al.  Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling , 2008 .

[21]  Anthony M. Castronova,et al.  Feedback loops and temporal misalignment in component-based hydrologic modeling , 2011 .

[22]  Jeffery S. Horsburgh,et al.  Evaluating the simulation times and mass balance errors of component-based models: An application of OpenMI 2.0 to an urban stormwater system , 2015, Environ. Model. Softw..

[23]  Yong G. Lai,et al.  Two-Dimensional Depth-Averaged Flow Modeling with an Unstructured Hybrid Mesh , 2010 .

[24]  Frank Warmerdam,et al.  The Geospatial Data Abstraction Library , 2008 .

[25]  Anthony M. Castronova,et al.  Modeling water resource systems using a service-oriented computing paradigm , 2011, Environ. Model. Softw..

[26]  Wolfgang Rauch,et al.  Parallel flow routing in SWMM 5 , 2014, Environ. Model. Softw..

[27]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[28]  Robert M. Argent,et al.  An overview of model integration for environmental applications--components, frameworks and semantics , 2004, Environ. Model. Softw..

[29]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[30]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.

[31]  Guoshun Zhang DEVELOPMENT OF A MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK FOR IMPLEMENTING LOW IMPACT DEVELOPMENT SCENARIOS IN AN URBANIZING WATERSHED , 2009 .

[32]  Jeffery S. Horsburgh,et al.  From OpenMI to HydroCouple: Advancing OpenMI to Support Experimental Simulations and Standard Geospatial Datasets , 2016 .

[33]  Jongho Kim,et al.  Self-Adaptive Kinematic-Dynamic Model for Overland Flow , 2014 .

[34]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[35]  George H. Leavesley,et al.  A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modelling , 2002 .

[36]  B. P. Leonard,et al.  Simple high-accuracy resolution program for convective modelling of discontinuities , 1988 .

[37]  Arie van Deursen,et al.  Domain-specific languages: an annotated bibliography , 2000, SIGP.

[38]  Michael Franz,et al.  Component-Oriented Programming in Object-Oriented Languages , 1999 .

[39]  M. Darwish,et al.  TVD schemes for unstructured grids , 2003 .

[40]  Olaf David,et al.  A software engineering perspective on environmental modeling framework design: The Object Modeling System , 2013, Environ. Model. Softw..

[41]  J. Kennedy Integrated assessment and environmental policy making In pursuit of usefulness , 2003 .

[42]  嘉数 侑昇 Object Modeling の研究 , 1977 .

[43]  Patrick Willems,et al.  Bi-directional sewer-river linking through the OpenMI software , 2008 .

[44]  Clemens A. Szyperski,et al.  Component software - beyond object-oriented programming , 2002 .

[45]  Matthew D. Wilson,et al.  Simple spatially-distributed models for predicting flood inundation: A review , 2007 .

[46]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[47]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[48]  Cecelia DeLuca,et al.  Design and Implementation of Components in the Earth System Modeling Framework , 2005, Int. J. High Perform. Comput. Appl..

[49]  Fabian Denner,et al.  TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness , 2015, J. Comput. Phys..

[50]  Arie van Deursen,et al.  Domain-Specific Languages versus Object-Oriented Frameworks: A Financial Engineering Case Study , 1997 .

[51]  Rezaul K. Chowdhury,et al.  Climate Change and Hydrologic Modeling , 2014, Handbook of Engineering Hydrology (Three-Volume Set).

[52]  Fue-Sang Lien,et al.  Upstream monotonic interpolation for scalar transport with application to complex turbulent flows , 1994 .

[53]  B. Sanders,et al.  Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying , 2006 .

[54]  N. Katopodes,et al.  Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow , 2012 .

[55]  M. Peric A finite volume method for the prediction of three-dimensional fluid flow in complex ducts , 1985 .

[56]  James Arthur Kohl,et al.  The CCA core specification in a distributed memory SPMD framework , 2002, Concurr. Comput. Pract. Exp..

[57]  G. Brent Hall,et al.  Open Source Approaches in Spatial Data Handling , 2008 .

[58]  J. M. Peterson,et al.  Accessible integration of agriculture, groundwater, and economic models using the Open Modeling Interface (OpenMI): methodology and initial results , 2009 .

[59]  Saeid Eslamian,et al.  Handbook of Engineering Hydrology : Modeling, Climate Change, and Variability , 2014 .

[60]  Peter Sommerlad,et al.  Pattern-Oriented Software Architecture Volume 1: A System of Patterns , 1996 .

[61]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[62]  Sabela Ramos,et al.  Java in the High Performance Computing arena: Research, practice and experience , 2013, Sci. Comput. Program..

[63]  U Colorado CSDMS — A Modeling System to Aid Sedimentary Research , 2011 .

[64]  J. B. Gregersen,et al.  OpenMI: Open modelling interface , 2007 .

[65]  Mary C. Hill,et al.  Integrated environmental modeling: A vision and roadmap for the future , 2013, Environ. Model. Softw..

[66]  Anthony M. Castronova,et al.  Models as web services using the Open Geospatial Consortium (OGC) Web Processing Service (WPS) standard , 2013, Environ. Model. Softw..