On the operation of visual cortical gamma in the light of frequency variation

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers.

[1]  Michael J Shelley,et al.  Searching for Autocoherence in the Cortical Network with a Time-Frequency Analysis of the Local Field Potential , 2010, The Journal of Neuroscience.

[2]  S. Martinez-Conde,et al.  The impact of microsaccades on vision: towards a unified theory of saccadic function , 2013, Nature Reviews Neuroscience.

[3]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[4]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[5]  Song Liu,et al.  Variable Bandwidth Filtering for Improved Sensitivity of Cross-Frequency Coupling Metrics , 2012, Brain Connect..

[6]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[7]  Meng Zhan,et al.  Oscillation death in coupled oscillators , 2009 .

[8]  Christian Leibold,et al.  Generation of theta oscillations by weakly coupled neural oscillators in the presence of noise , 2006, Journal of Computational Neuroscience.

[9]  C. Schroeder,et al.  Neuronal Mechanisms of Cortical Alpha Oscillations in Awake-Behaving Macaques , 2008, The Journal of Neuroscience.

[10]  Woodrow L. Shew,et al.  Maximal Variability of Phase Synchrony in Cortical Networks with Neuronal Avalanches , 2012, The Journal of Neuroscience.

[11]  P. Fries,et al.  Magnetoencephalography in Twins Reveals a Strong Genetic Determination of the Peak Frequency of Visually Induced Gamma-Band Synchronization , 2012, The Journal of Neuroscience.

[12]  Michael Breakspear,et al.  A Dendritic Mechanism for Decoding Traveling Waves: Principles and Applications to Motor Cortex , 2013, PLoS Comput. Biol..

[13]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[14]  T. Duncan ON THE CALCULATION OF MUTUAL INFORMATION , 1970 .

[15]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[16]  S. Bressler,et al.  Granger Causality: Basic Theory and Application to Neuroscience , 2006, q-bio/0608035.

[17]  Dominique L. Pritchett,et al.  Neural Correlates of Tactile Detection: A Combined Magnetoencephalography and Biophysically Based Computational Modeling Study , 2007, The Journal of Neuroscience.

[18]  Paul H. E. Tiesinga,et al.  Attentional modulation of firing rate and synchrony in a model cortical network , 2005, Journal of Computational Neuroscience.

[19]  D. Leopold,et al.  Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex , 2012, Current Biology.

[20]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[21]  Adam Kohn,et al.  Laminar dependence of neuronal correlations in visual cortex. , 2013, Journal of neurophysiology.

[22]  G. Laurent,et al.  Impaired odour discrimination on desynchronization of odour-encoding neural assemblies , 1997, Nature.

[23]  Hans Gilgen Univariate Time Series in Geosciences: Theory and Examples , 2005 .

[24]  Krish D. Singh,et al.  Orientation Discrimination Performance Is Predicted by GABA Concentration and Gamma Oscillation Frequency in Human Primary Visual Cortex , 2009, The Journal of Neuroscience.

[25]  O. Jensen,et al.  Cross-frequency coupling between neuronal oscillations , 2007, Trends in Cognitive Sciences.

[26]  E. Gordon,et al.  "Gamma synchrony" in first-episode schizophrenia: a disorder of temporal connectivity? , 2005, The American journal of psychiatry.

[27]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[28]  Krish D. Singh,et al.  Induced visual illusions and gamma oscillations in human primary visual cortex , 2004, The European journal of neuroscience.

[29]  G Bard Ermentrout,et al.  Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. , 2005, Physical review letters.

[30]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[31]  A. Konnerth,et al.  Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity , 1998, Progress in Neurobiology.

[32]  J. Bullier,et al.  Cross-correlation study of the temporal interactions between areas V1 and V2 of the macaque monkey. , 1999, Journal of neurophysiology.

[33]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[34]  Michael A. Schwemmer,et al.  The Theory of Weakly Coupled Oscillators , 2012 .

[35]  G. Woodman,et al.  Microcircuitry of Agranular Frontal Cortex: Testing the Generality of the Canonical Cortical Microcircuit , 2014, The Journal of Neuroscience.

[36]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[37]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[38]  Andreas Daffertshofer,et al.  Generative Models of Cortical Oscillations: Neurobiological Implications of the Kuramoto Model , 2010, Front. Hum. Neurosci..

[39]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[40]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[41]  P De Weerd,et al.  Areas V1 and V2 show microsaccade‐related 3–4‐Hz covariation in gamma power and frequency , 2016, The European journal of neuroscience.

[42]  Robert J. Butera,et al.  Phase Response Curves in Neuroscience , 2012, Springer Series in Computational Neuroscience.

[43]  Y. Dan,et al.  Spike Timing-Dependent Plasticity of Neural Circuits , 2004, Neuron.

[44]  H. Daido,et al.  Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators , 1990 .

[45]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[46]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[47]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[48]  O. Jensen,et al.  Gamma Power Is Phase-Locked to Posterior Alpha Activity , 2008, PloS one.

[49]  W. Singer,et al.  Stimulus‐Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence , 1990, The European journal of neuroscience.

[50]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[51]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[52]  J. Bullier,et al.  Cortical mapping of gamma oscillations in areas V1 and V4 of the macaque monkey , 2001, Visual Neuroscience.

[53]  Kevin Whittingstall,et al.  Effects of neural synchrony on surface EEG. , 2014, Cerebral cortex.

[54]  M. Hereld,et al.  Emergent epileptiform activity in neural networks with weak excitatory synapses , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[55]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[56]  D. Schwarzkopf,et al.  The Frequency of Visually Induced Gamma-Band Oscillations Depends on the Size of Early Human Visual Cortex , 2012, The Journal of Neuroscience.

[57]  Nikos K. Logothetis,et al.  Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex , 1998, Experimental Brain Research.

[58]  Henry J. Alitto,et al.  Simultaneous Recordings from the Primary Visual Cortex and Lateral Geniculate Nucleus Reveal Rhythmic Interactions and a Cortical Source for Gamma-Band Oscillations , 2014, The Journal of Neuroscience.

[59]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[60]  Terrence J. Sejnowski,et al.  Mechanisms for Phase Shifting in Cortical Networks and their Role in Communication through Coherence , 2010, Front. Hum. Neurosci..

[61]  K. D. Singh,et al.  Spectral properties of induced and evoked gamma oscillations in human early visual cortex to moving and stationary stimuli. , 2009, Journal of neurophysiology.

[62]  A. Aertsen,et al.  Beyond the Cortical Column: Abundance and Physiology of Horizontal Connections Imply a Strong Role for Inputs from the Surround , 2011, Front. Neurosci..

[63]  Aribert Rothenberger,et al.  Abnormal early stages of task stimulus processing in children with attention-deficit hyperactivity disorder – evidence from event-related gamma oscillations , 2001, Clinical Neurophysiology.

[64]  R. Schafer,et al.  What Is a Savitzky-Golay Filter? , 2022 .

[65]  Michael X Cohen,et al.  Fluctuations in Oscillation Frequency Control Spike Timing and Coordinate Neural Networks , 2014, The Journal of Neuroscience.

[66]  R. Shapley,et al.  Is Gamma-Band Activity in the Local Field Potential of V1 Cortex a “Clock” or Filtered Noise? , 2011, The Journal of Neuroscience.

[67]  C. Schroeder,et al.  The Gamma Oscillation: Master or Slave? , 2009, Brain Topography.

[68]  Hellmuth Obrig,et al.  Stimulus-Induced and State-Dependent Sustained Gamma Activity Is Tightly Coupled to the Hemodynamic Response in Humans , 2009, The Journal of Neuroscience.

[69]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[70]  DeLiang Wang,et al.  Image Segmentation Based on Oscillatory Correlation , 1997, Neural Computation.

[71]  M. Häusser,et al.  Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons , 2010, Science.

[72]  Heggere S. Ranganath,et al.  Perfect image segmentation using pulse coupled neural networks , 1999, IEEE Trans. Neural Networks.

[73]  M. Häusser,et al.  Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites , 2011, Neuron.

[74]  Nicolas Brunel,et al.  Sensory neural codes using multiplexed temporal scales , 2010, Trends in Neurosciences.

[75]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[76]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[78]  Robert Oostenveld,et al.  Visual Cortical Gamma-Band Activity During Free Viewing of Natural Images , 2013, Cerebral cortex.

[79]  Heywood M. Petry,et al.  A method for determining threshold from single-unit neural activity , 1985, Brain Research.

[80]  David P. Doane,et al.  Measuring Skewness: A Forgotten Statistic? , 2011 .

[81]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[82]  F. Tong,et al.  Neural mechanisms of object-based attention. , 2015, Cerebral cortex.

[83]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[84]  G. Carter,et al.  Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing , 1973 .

[85]  Roger D. Traub,et al.  Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex , 2011, The Journal of Neuroscience.

[86]  Krish D. Singh,et al.  Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex , 2008, NeuroImage.

[87]  Matthew J. Brookes,et al.  Source localisation in concurrent EEG/fMRI: Applications at 7T , 2009, NeuroImage.

[88]  Amy M. Ni,et al.  Strength of Gamma Rhythm Depends on Normalization , 2013, PLoS biology.

[89]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[90]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[91]  Supratim Ray,et al.  Effect of amplitude correlations on coherence in the local field potential , 2014, Journal of neurophysiology.

[92]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[93]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[94]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[95]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[96]  Andreas K. Engel,et al.  Temporal Binding, Binocular Rivalry, and Consciousness , 1999, Consciousness and Cognition.

[97]  Alexander S. Ecker,et al.  Feature Selectivity of the Gamma-Band of the Local Field Potential in Primate Primary Visual Cortex , 2008, Front. Neurosci..

[98]  R. Shapley,et al.  Stochastic Generation of Gamma-Band Activity in Primary Visual Cortex of Awake and Anesthetized Monkeys , 2012, The Journal of Neuroscience.

[99]  T. Sejnowski,et al.  Regulation of spike timing in visual cortical circuits , 2008, Nature Reviews Neuroscience.

[100]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[101]  J J Hopfield,et al.  What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Wolf Singer,et al.  Time as coding space? , 1999, Current Opinion in Neurobiology.

[103]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[104]  Mingzhou Ding,et al.  Analyzing information flow in brain networks with nonparametric Granger causality , 2008, NeuroImage.

[105]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[106]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[107]  D. Kleinfeld,et al.  Traveling Electrical Waves in Cortex Insights from Phase Dynamics and Speculation on a Computational Role , 2001, Neuron.

[108]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[109]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[110]  J. Parra,et al.  Epilepsies as Dynamical Diseases of Brain Systems: Basic Models of the Transition Between Normal and Epileptic Activity , 2003, Epilepsia.

[111]  Norden E. Huang,et al.  INTRODUCTION TO THE HILBERT–HUANG TRANSFORM AND ITS RELATED MATHEMATICAL PROBLEMS , 2005 .

[112]  Pascal Fries,et al.  Rhythmic neuronal synchronization in visual cortex entails spatial phase relation diversity that is modulated by stimulation and attention , 2013, NeuroImage.

[113]  N. Logothetis The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal , 2003, The Journal of Neuroscience.

[114]  John M Beggs,et al.  The criticality hypothesis: how local cortical networks might optimize information processing , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[115]  J. Vrba,et al.  Signal processing in magnetoencephalography. , 2001, Methods.

[116]  P. Jonas,et al.  Shunting Inhibition Improves Robustness of Gamma Oscillations in Hippocampal Interneuron Networks by Homogenizing Firing Rates , 2006, Neuron.

[117]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[118]  Rufin VanRullen,et al.  Temporal codes and sparse representations: A key to understanding rapid processing in the visual system , 2004, Journal of Physiology-Paris.

[119]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[120]  R. Oostenveld,et al.  A MEMS-based flexible multichannel ECoG-electrode array , 2009, Journal of neural engineering.

[121]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[122]  Rama Chellappa,et al.  A unified approach to boundary perception: edges, textures, and illusory contours , 1993, IEEE Trans. Neural Networks.

[123]  P. Bressloff,et al.  Mode locking and Arnold tongues in integrate-and-fire neural oscillators. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[124]  Joël M. H. Karel,et al.  Singular Spectrum Decomposition: a New Method for Time Series Decomposition , 2014, Adv. Data Sci. Adapt. Anal..

[125]  Geoffrey E. Hinton,et al.  Computation by neural networks , 2000, Nature Neuroscience.

[126]  Henry Markram,et al.  Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons , 2008, Biological Cybernetics.

[127]  Christoph S. Herrmann,et al.  Enhanced gamma-band activity in ADHD patients lacks correlation with memory performance found in healthy children , 2008, Brain Research.

[128]  R. Eckhorn,et al.  Flexible cortical gamma-band correlations suggest neural principles of visual processing , 2001 .

[129]  Pascal Fries,et al.  A Microsaccadic Rhythm Modulates Gamma-Band Synchronization and Behavior , 2009, The Journal of Neuroscience.

[130]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[131]  Irina Surina,et al.  Oscillatory network with self-organized dynamical connections for synchronization-based image segmentation. , 2004, Bio Systems.

[132]  Kazuyuki Aihara,et al.  Dynamical Cell Assembly Hypothesis -- Theoretical Possibility of Spatio-temporal Coding in the Cortex , 1996, Neural Networks.

[133]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[134]  Bart Gips,et al.  Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing , 2014, Trends in Neurosciences.

[135]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[136]  A. Thiele,et al.  Neuronal synchrony does not correlate with motion coherence in cortical area MT , 2003, Nature.

[137]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[138]  O. Bertrand,et al.  Oscillatory gamma activity in humans: a possible role for object representation. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[139]  Christof Koch,et al.  Theta Phase Segregation of Input-Specific Gamma Patterns in Entorhinal-Hippocampal Networks , 2014, Neuron.

[140]  Gareth R. Barnes,et al.  The missing link: analogous human and primate cortical gamma oscillations , 2005, NeuroImage.

[141]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[142]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[143]  E. Miller,et al.  Buschman and Posterior Parietal Cortices Top-Down Versus Bottom-Up Control of Attention in the Prefrontal , 2011 .

[144]  Gustavo Deco,et al.  Oscillations, Phase-of-Firing Coding, and Spike Timing-Dependent Plasticity: An Efficient Learning Scheme , 2009, The Journal of Neuroscience.

[145]  Anina N. Rich,et al.  Orientation selectivity in primary visual cortex using MEG: an inverse oblique effect? , 2010 .

[146]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[147]  R. Llinás,et al.  In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[148]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[149]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[150]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[151]  Junji Ito,et al.  Cross-frequency coupling of eye-movement related LFP activities of freely viewing monkeys , 2011, BMC Neuroscience.

[152]  P. Fries,et al.  Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching , 2013, Neuron.

[153]  R. Desimone,et al.  Stimulus repetition modulates gamma-band synchronization in primate visual cortex , 2014, Proceedings of the National Academy of Sciences.

[154]  O. Paulsen,et al.  Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information , 2008, The Journal of physiology.

[155]  C. Malsburg Binding in models of perception and brain function , 1995, Current Opinion in Neurobiology.

[156]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[157]  J. Lund,et al.  Anatomical substrates for functional columns in macaque monkey primary visual cortex. , 2003, Cerebral cortex.

[158]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[159]  G. DeAngelis,et al.  Does Neuronal Synchrony Underlie Visual Feature Grouping? , 2005, Neuron.

[160]  Romain Brette,et al.  Computing with Neural Synchrony , 2012, PLoS Comput. Biol..

[161]  B. Merker Cortical gamma oscillations: the functional key is activation, not cognition , 2013, Neuroscience & Biobehavioral Reviews.

[162]  J. Kaiser,et al.  Human gamma-frequency oscillations associated with attention and memory , 2007, Trends in Neurosciences.

[163]  Joël M. H. Karel,et al.  Singular spectrum analysis improves analysis of local field potentials from macaque V1 in active fixation task , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[164]  Gareth R. Barnes,et al.  Stimuli of varying spatial scale induce gamma activity with distinct temporal characteristics in human visual cortex , 2007, NeuroImage.

[165]  Pascal Fries,et al.  Visual stimulus eccentricity affects human gamma peak frequency , 2013, NeuroImage.

[166]  R. Quian Quiroga,et al.  Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering , 2004, Neural Computation.

[167]  Robert A. Frazor,et al.  Local luminance and contrast in natural images , 2006, Vision Research.

[168]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[169]  Richard M. Leahy,et al.  A note on the phase locking value and its properties , 2013, NeuroImage.

[170]  Steven H. Strogatz,et al.  Synchronization: A Universal Concept in Nonlinear Sciences , 2003 .

[171]  A. Thiele,et al.  Attention alters spatial integration in macaque V1 in an eccentricity-dependent manner , 2007, Nature Neuroscience.

[172]  G. Stanley Reading and writing the neural code , 2013, Nature Neuroscience.

[173]  Huang Yourui,et al.  Image Segmentation Using Pulse Coupled Neural Networks , 2008, 2008 International Conference on MultiMedia and Information Technology.

[174]  T. Sejnowski,et al.  Cortical oscillations arise from contextual interactions that regulate sparse coding , 2014, Proceedings of the National Academy of Sciences.

[175]  Jason Dowling,et al.  Artificial human vision , 2005, Expert review of medical devices.

[176]  Martin Vinck,et al.  Attentional Modulation of Cell-Class-Specific Gamma-Band Synchronization in Awake Monkey Area V4 , 2013, Neuron.

[177]  Jeffrey G. Ojemann,et al.  Power-Law Scaling in the Brain Surface Electric Potential , 2009, PLoS Comput. Biol..

[178]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[179]  J. Kelso,et al.  Cortical coordination dynamics and cognition , 2001, Trends in Cognitive Sciences.

[180]  M. Scanziani,et al.  Instantaneous Modulation of Gamma Oscillation Frequency by Balancing Excitation with Inhibition , 2009, Neuron.

[181]  Roman Bauer,et al.  Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey , 2000, The European journal of neuroscience.

[182]  L. Rubchinsky,et al.  Detecting the temporal structure of intermittent phase locking. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[183]  A. Thiele,et al.  Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 , 2008, The European journal of neuroscience.

[184]  Caspar M. Schwiedrzik,et al.  (Micro)Saccades, corollary activity and cortical oscillations , 2009, Trends in Cognitive Sciences.

[185]  C. van Vreeswijk,et al.  What Is the Neural Code , 2006 .

[186]  G. Barnes,et al.  Identifying spatially overlapping local cortical networks with MEG , 2009, Human brain mapping.

[187]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[188]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[189]  Katrin Amunts,et al.  Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. , 2010, Cerebral cortex.

[190]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[191]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[192]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[193]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[194]  T. J. Teyler,et al.  A method for calculating current source density (CSD) analysis without resorting to recording sites outside the sampling volume , 1988, Journal of Neuroscience Methods.

[195]  Evian Gordon,et al.  Gamma activity in schizophrenia: evidence of impaired network binding? , 2000, Clinical Neurophysiology.

[196]  Danko Nikolić,et al.  Frequencies of gamma/beta oscillations are stably tuned to stimulus properties , 2010, Neuroreport.

[197]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[198]  Yoshio Sakurai,et al.  Population coding by cell assemblies—what it really is in the brain , 1996, Neuroscience Research.

[199]  J Gautrais,et al.  Rate coding versus temporal order coding: a theoretical approach. , 1998, Bio Systems.

[200]  R. Knight,et al.  The functional role of cross-frequency coupling , 2010, Trends in Cognitive Sciences.

[201]  J Iriarte,et al.  Gamma-band phase clustering and photosensitivity: is there an underlying mechanism common to photosensitive epilepsy and visual perception? , 2003, Brain : a journal of neurology.

[202]  Joanna Poyago-Theotoky,et al.  Universities and Fundamental Research: Reflections on the Growth of University–Industry Partnerships , 2002 .

[203]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[204]  David Hansel,et al.  Synchronous Chaos and Broad Band Gamma Rhythm in a Minimal Multi-Layer Model of Primary Visual Cortex , 2011, PLoS Comput. Biol..

[205]  G. Karmos,et al.  Transient cortical excitation at the onset of visual fixation. , 2008, Cerebral cortex.

[206]  Thomas Burwick,et al.  Temporal Coding: Assembly Formation Through Constructive Interference , 2008, Neural Computation.

[207]  Michael J. Jutras,et al.  Oscillatory activity in the monkey hippocampus during visual exploration and memory formation , 2013, Proceedings of the National Academy of Sciences.

[208]  DeLiang Wang,et al.  A dynamically coupled neural oscillator network for image segmentation , 2002, Neural Networks.

[209]  L. Palmer,et al.  Response to Contrast of Electrophysiologically Defined Cell Classes in Primary Visual Cortex , 2003, The Journal of Neuroscience.

[210]  Alexander Maier,et al.  Infragranular Sources of Sustained Local Field Potential Responses in Macaque Primary Visual Cortex , 2011, The Journal of Neuroscience.

[211]  Gustavo Deco,et al.  Optimal Information Transfer in the Cortex through Synchronization , 2010, PLoS Comput. Biol..

[212]  Murray Shanahan,et al.  Establishing Communication between Neuronal Populations through Competitive Entrainment , 2012, Front. Comput. Neurosci..

[213]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[214]  Derek K. Jones,et al.  Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans , 2009, Proceedings of the National Academy of Sciences.

[215]  J. Lisman,et al.  The Theta-Gamma Neural Code , 2013, Neuron.

[216]  T. Sejnowski,et al.  Synchronous oscillatory activity in sensory systems: new vistas on mechanisms , 1997, Current Opinion in Neurobiology.

[217]  T. Womelsdorf,et al.  The role of neuronal synchronization in selective attention , 2007, Current Opinion in Neurobiology.

[218]  S. Muthukumaraswamy,et al.  Functional and structural correlates of the aging brain: Relating visual cortex (V1) gamma band responses to age‐related structural change , 2012, Human brain mapping.

[219]  Reinhard Eckhorn,et al.  Neural mechanisms of scene segmentation: recordings from the visual cortex suggest basic circuits for linking field models , 1999, IEEE Trans. Neural Networks.

[220]  Xoana G. Troncoso,et al.  Microsaccades: a neurophysiological analysis , 2009, Trends in Neurosciences.

[221]  Martin Vinck,et al.  The pairwise phase consistency: A bias-free measure of rhythmic neuronal synchronization , 2010, NeuroImage.

[222]  E. Gordon,et al.  Synchronous Gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia , 2003, Brain Research Reviews.

[223]  C. Gray The Temporal Correlation Hypothesis of Visual Feature Integration Still Alive and Well , 1999, Neuron.

[224]  Rodrigo F. Salazar,et al.  Responses to natural scenes in cat V1. , 2003, Journal of neurophysiology.

[225]  R Eckhorn,et al.  Cortical synchronization suggests neural principles of visual feature grouping. , 2000, Acta neurobiologiae experimentalis.

[226]  Cees van Leeuwen,et al.  Intermittent dynamics underlying the intrinsic fluctuations of the collective synchronization patterns in electrocortical activity. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[227]  Chris Eliasmith,et al.  A Unified Approach to Building and Controlling Spiking Attractor Networks , 2005, Neural Computation.

[228]  Peter De Weerd,et al.  Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding , 2015, PLoS Comput. Biol..

[229]  David A Markowitz,et al.  Rate-specific synchrony: Using noisy oscillations to detect equally active neurons , 2008, Proceedings of the National Academy of Sciences.

[230]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[231]  W. Pritchard,et al.  The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. , 1992, The International journal of neuroscience.

[232]  H. Eichenbaum,et al.  Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. , 2010, Journal of neurophysiology.

[233]  Partha P. Mitra,et al.  Chronux: A platform for analyzing neural signals , 2010, Journal of Neuroscience Methods.

[234]  A. Kohn,et al.  No Consistent Relationship between Gamma Power and Peak Frequency in Macaque Primary Visual Cortex , 2013, The Journal of Neuroscience.

[235]  J. Martinerie,et al.  Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony , 2001, Journal of Neuroscience Methods.

[236]  Shane Lee,et al.  Cortical Gamma Rhythms Modulate NMDAR-Mediated Spike Timing Dependent Plasticity in a Biophysical Model , 2009, PLoS Comput. Biol..

[237]  T. Demiralp,et al.  Human EEG gamma oscillations in neuropsychiatric disorders , 2005, Clinical Neurophysiology.

[238]  Roger D. Traub,et al.  Rates and Rhythms: A Synergistic View of Frequency and Temporal Coding in Neuronal Networks , 2012, Neuron.

[239]  Peter De Weerd,et al.  Parametric variation of gamma frequency and power with luminance contrast: A comparative study of human MEG and monkey LFP and spike responses , 2015, NeuroImage.

[240]  Frank C. Hoppensteadt,et al.  Synaptic organizations and dynamical properties of weakly connected neural oscillators , 1996, Biological Cybernetics.

[241]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[242]  Adriano B. L. Tort,et al.  On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus , 2016, eLife.

[243]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[244]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[245]  Peter König,et al.  Stimulus-Dependent Assembly Formation of Oscillatory Responses: I. Synchronization , 1991, Neural Computation.

[246]  Bernard C. Picinbono,et al.  On instantaneous amplitude and phase of signals , 1997, IEEE Trans. Signal Process..

[247]  G. Buzsáki,et al.  Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks , 1995, Current Opinion in Neurobiology.

[248]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[249]  Robert Kozma,et al.  Intermittent spatio-temporal desynchronization and sequenced synchrony in ECoG signals. , 2008, Chaos.

[250]  N. Logothetis,et al.  Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex , 2008, Current Biology.

[251]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[252]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[253]  W. Gerstner,et al.  Spike-Timing-Dependent Plasticity: A Comprehensive Overview , 2012, Front. Syn. Neurosci..

[254]  Y. Amitai,et al.  Propagating neuronal discharges in neocortical slices: computational and experimental study. , 1997, Journal of neurophysiology.

[255]  DeLiang Wang,et al.  Locally excitatory globally inhibitory oscillator networks , 1995, IEEE Transactions on Neural Networks.

[256]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[257]  M. Rolfs Microsaccades: Small steps on a long way , 2009, Vision Research.

[258]  Thomas Burwick Oscillatory Neural Networks with Self-Organized Segmentation of Overlapping Patterns , 2007, Neural Computation.

[259]  T. Sejnowski,et al.  Information transfer in entrained cortical neurons. , 2002, Network.

[260]  Reinhard Eckhorn,et al.  Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex , 1990, Neural Computation.

[261]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[262]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[263]  Meagen M Rosenthal Curriculum vitae for , 2015 .

[264]  Mikko Pohja,et al.  On the human sensorimotor-cortex beta rhythm: Sources and modeling , 2005, NeuroImage.

[265]  C. Schroeder,et al.  Striate cortical contribution to the surface-recorded pattern-reversal vep in the alert monkey , 1991, Vision Research.

[266]  S. Thorpe,et al.  Spike times make sense , 2005, Trends in Neurosciences.

[267]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[268]  J. Bullier,et al.  Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? , 2003, Journal of Physiology-Paris.

[269]  W. Singer,et al.  Synchrony Makes Neurons Fire in Sequence, and Stimulus Properties Determine Who Is Ahead , 2011, The Journal of Neuroscience.

[270]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[271]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[272]  Robert Oostenveld,et al.  Localizing human visual gamma-band activity in frequency, time and space , 2006, NeuroImage.

[273]  D Hermes,et al.  Stimulus Dependence of Gamma Oscillations in Human Visual Cortex. , 2015, Cerebral cortex.

[274]  E. Izhikevich,et al.  Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles? , 1998, Bio Systems.

[275]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[276]  R. Eckhorn,et al.  Contour decouples gamma activity across texture representation in monkey striate cortex. , 2000, Cerebral cortex.

[277]  C. Gray,et al.  Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. , 2000, Cerebral cortex.

[278]  Alessandro Barardi,et al.  Phase-Coherence Transitions and Communication in the Gamma Range between Delay-Coupled Neuronal Populations , 2014, PLoS Comput. Biol..

[279]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.