Exploring collections of 3D models using fuzzy correspondences

Large collections of 3D models from the same object class (e.g., chairs, cars, animals) are now commonly available via many public repositories, but exploring the range of shape variations across such collections remains a challenging task. In this work, we present a new exploration interface that allows users to browse collections based on similarities and differences between shapes in user-specified regions of interest (ROIs). To support this interactive system, we introduce a novel analysis method for computing similarity relationships between points on 3D shapes across a collection. We encode the inherent ambiguity in these relationships using fuzzy point correspondences and propose a robust and efficient computational framework that estimates fuzzy correspondences using only a sparse set of pairwise model alignments. We evaluate our analysis method on a range of correspondence benchmarks and report substantial improvements in both speed and accuracy over existing alternatives. In addition, we demonstrate how fuzzy correspondences enable key features in our exploration tool, such as automated view alignment, ROI-based similarity search, and faceted browsing.

[1]  Helmut Pottmann,et al.  Registration of point cloud data from a geometric optimization perspective , 2004, SGP '04.

[2]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[3]  Daniela Giorgi,et al.  3D relevance feedback via multilevel relevance judgements , 2010, The Visual Computer.

[4]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.

[5]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[7]  Vladlen Koltun,et al.  Joint shape segmentation with linear programming , 2011, ACM Trans. Graph..

[8]  Leonidas J. Guibas,et al.  Exploration of continuous variability in collections of 3D shapes , 2011, ACM Trans. Graph..

[9]  Leonidas J. Guibas,et al.  Image webs: Computing and exploiting connectivity in image collections , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Yehoshua Y. Zeevi,et al.  The farthest point strategy for progressive image sampling , 1997, IEEE Trans. Image Process..

[11]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[12]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[13]  N. Mitra,et al.  4-points congruent sets for robust pairwise surface registration , 2008, SIGGRAPH 2008.

[14]  Pat Hanrahan,et al.  Characterizing structural relationships in scenes using graph kernels , 2011, ACM Trans. Graph..

[15]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[16]  Daniel Cohen-Or,et al.  Fit and diverse , 2012, ACM Trans. Graph..

[17]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[18]  Szymon Rusinkiewicz,et al.  Modeling by example , 2004, ACM Trans. Graph..

[19]  Daniela Giorgi,et al.  SHape REtrieval Contest 2007: Watertight Models Track , 2007 .

[20]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[21]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[22]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[24]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, ACM Trans. Graph..

[25]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[26]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[27]  Thomas A. Funkhouser,et al.  Consistent segmentation of 3D models , 2009, Comput. Graph..

[28]  Thomas A. Funkhouser,et al.  Fuzzy Geodesics and Consistent Sparse Correspondences For: eformable Shapes , 2010 .

[29]  Marti A. Hearst Clustering versus faceted categories for information exploration , 2006, Commun. ACM.

[30]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[31]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[32]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[33]  I. Daubechies,et al.  Symmetry factored embedding and distance , 2010, ACM Trans. Graph..

[34]  Leonidas J. Guibas,et al.  An Optimization Approach to Improving Collections of Shape Maps , 2011, Comput. Graph. Forum.

[35]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[36]  Daniel Cohen-Or,et al.  Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering , 2011, ACM Trans. Graph..