PINT: A Modern Software Package for Pulsar Timing

Over the past few decades, the measurement precision of some pulsar-timing experiments has advanced from ~10us to ~10ns, revealing many subtle phenomena. Such high precision demands both careful data handling and sophisticated timing models to avoid the systematic error. To achieve these goals, we present PINT (PINT Is Not Tempo3}), a high-precision Python pulsar timing data analysis package. PINT is well-tested, validated, object-oriented, and modular, enabling interactive data analysis and providing an extensible and flexible development platform for timing applications. It utilizes well-debugged public Python packages (e.g., the NumPy and Astropy libraries) and modern software development schemes (e.g., version control and efficient development with git and GitHub) and a continually expanding test suite for improved reliability, accuracy, and reproducibility. PINT is developed and implemented without referring to, copying, or transcribing the code from other traditional pulsar timing software packages (e.g TEMPO/TEMPO2) and therefore provides a robust tool for cross-checking timing analyses and simulating pulse arrival times. In this paper, we describe the design, usage, and validation of PINT, and we compare timing results between it and TEMPO and TEMPO2.

[1]  D. Thompson,et al.  PRECISE γ-RAY TIMING AND RADIO OBSERVATIONS OF 17 FERMI γ-RAY PULSARS , 2010, 1011.2468.

[2]  D. Champion,et al.  The European Pulsar Timing Array and the Large European Array for Pulsars , 2013 .

[3]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[4]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[5]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[6]  J. Ellis A Bayesian analysis pipeline for continuous GW sources in the PTA band , 2013, 1305.0835.

[7]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[8]  D. Lorimer,et al.  Handbook of Pulsar Astronomy , 2004 .

[9]  V. Kaspi,et al.  ROSSI X-RAY TIMING EXPLORER MONITORING OF THE ANOMALOUS X-RAY PULSAR 1E 1048.1 − 5937: LONG-TERM VARIABILITY AND THE 2007 MARCH EVENT , 2008, 0811.2659.

[10]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[11]  J. H. Taylor,et al.  Pulsar timing and relativistic gravity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[12]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[13]  V. Kaspi,et al.  RXTE Monitoring of the Anomalous X-ray Pulsar 1E 1048.1-5937: Long-Term Variability and the 2007 March Event , 2008, 0811.2659.

[14]  E. Cator,et al.  The observed velocity distribution of young pulsars , 2017, 1708.08281.

[15]  R. N. Manchester,et al.  Tests of General Relativity from Timing the Double Pulsar , 2006, Science.

[16]  R. Lynch,et al.  Universality of free fall from the orbital motion of a pulsar in a stellar triple system , 2018, Nature.

[17]  Matteo Bachetti,et al.  HENDRICS: High ENergy Data Reduction Interface from the Command Shell , 2018 .

[18]  I. Shapiro Fourth Test of General Relativity , 1964 .

[19]  R. N. Manchester,et al.  Optimal interpolation and prediction in pulsar timing , 2012, 1204.6111.

[20]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[21]  V. Kaspi,et al.  Magnetar-Like Emission from the Young Pulsar in Kes 75 , 2008, Science.

[22]  The orthometric parametrization of the Shapiro delay and an improved test of general relativity with binary pulsars , 2010, 1007.0933.

[23]  R. Manchester,et al.  tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.

[24]  Zaven Arzoumanian,et al.  The NANOGrav 12.5 yr Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars , 2020, The Astrophysical Journal Supplement Series.

[25]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .

[26]  B. C. Joshi,et al.  Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics , 2018 .

[27]  T. J. W. Lazio,et al.  ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS , 2015, 1511.05564.

[28]  Stephen R. Taylor,et al.  The NANOGrav 11-year Data Set: High-precision Timing of 45 Millisecond Pulsars , 2017, 1801.01837.

[29]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[30]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[31]  P. Freire,et al.  An algorithm for determining the rotation count of pulsars , 2018, 1802.07211.

[32]  Takashi Okajima,et al.  The Neutron star Interior Composition ExploreR (NICER): an Explorer mission of opportunity for soft x-ray timing spectroscopy , 2012, Other Conferences.

[33]  T. Damour,et al.  On the orbital period change of the binary pulsar PSR 1913+16 , 1991 .

[34]  The Parkes Pulsar Timing Array Project , 2012, Publications of the Astronomical Society of Australia.

[35]  H. Pletsch,et al.  GAMMA-RAY TIMING OF REDBACK PSR J2339–0533: HINTS FOR GRAVITATIONAL QUADRUPOLE MOMENT CHANGES , 2015, 1504.07466.

[36]  J. Weisberg,et al.  Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16 , 1989 .

[37]  S. Ransom,et al.  A two-solar-mass neutron star measured using Shapiro delay , 2010, Nature.

[38]  D. Stinebring,et al.  THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.

[39]  A. Lyne,et al.  An analysis of the timing irregularities for 366 pulsars , 2009, 0912.4537.

[40]  D. Stinebring,et al.  The NANOGrav Nine-Year Data Set: Measurement and Interpretation of Variations in Dispersion Measures , 2016 .

[41]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[42]  D. C. Backer,et al.  Pulsar timing and general relativity , 1986 .

[43]  K. Makishima X-ray studies of neutron stars and their magnetic fields , 2016, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[44]  Zaven Arzoumanian,et al.  Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar , 2020, Nature Astronomy.

[45]  Y. Levin,et al.  On measuring the gravitational-wave background using Pulsar Timing Arrays , 2008, 0809.0791.

[46]  S. Teukolsky,et al.  Arrival-time analysis for a pulsar in a binary system. , 1976 .

[47]  P. K. Seidelmann,et al.  1980 IAU Theory of Nutation: The final report of the IAU Working Group on Nutation , 1982 .

[48]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[49]  Sergei M. Kopeikin Proper Motion of Binary Pulsars as a Source of Secular Variations of Orbital Parameters , 1996 .

[50]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[51]  Raúl Rueda,et al.  Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support by P. C. Gregory. Hardcover: 486 pages. Cambridge University Press. ISBN: 052184150X, $75.00 , 2007 .

[52]  J. Cordes,et al.  JPL pulsar timing observations. III. Pulsar rotation fluctuations. , 1985 .

[53]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: Multivariate Gaussian from maximum entropy , 2005 .

[54]  R. Lynch,et al.  A millisecond pulsar in a stellar triple system , 2014, Nature.

[55]  J. Hurley,et al.  Populating the Galaxy with pulsars - II. Galactic dynamics , 2009, 0903.1905.

[56]  D. Stinebring,et al.  The NANOGrav Nine-year Data Set: Measurement and Analysis of Variations in Dispersion Measures , 2016, 1612.03187.

[57]  S. Migliari,et al.  Stingray: A Modern Python Library for Spectral Timing , 2019 .

[58]  A. Hewish,et al.  Observation of a Rapidly Pulsating Radio Source , 1968, Nature.

[59]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[60]  R. Manchester,et al.  Period irregularities in pulsars , 1974 .

[61]  S. Kopeikin On possible implications of orbital parallaxes of wide orbit binary pulsars and their measurability , 1995 .

[62]  Rutger van Haasteren,et al.  Accelerating pulsar timing data analysis , 2012, 1210.0584.

[63]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[64]  T. Pennucci Frequency-dependent Template Profiles for High-precision Pulsar Timing , 2018, The Astrophysical Journal.

[65]  K. Jarrod Millman,et al.  Array programming with NumPy , 2020, Nat..

[66]  F. Camilo,et al.  Precision timing measurements of PSR J1012+5307 , 2001, astro-ph/0102309.

[67]  B. W. Meyers,et al.  The MeerKAT telescope as a pulsar facility: System verification and early science results from MeerTime , 2020, Publications of the Astronomical Society of Australia.

[68]  J. Anderson,et al.  First detection of frequency-dependent, time-variable dispersion measures , 2019, Astronomy & Astrophysics.

[69]  D. Backer,et al.  Constructing a Pulsar Timing Array , 1990 .

[70]  R. Manchester The International Pulsar Timing Array , 2013, 1309.7392.

[71]  S. Kulkarni,et al.  A millisecond pulsar , 1982, Nature.

[72]  D. Stinebring,et al.  The NANOGrav 12.5-year Data Set: Wideband Timing of 47 Millisecond Pulsars , 2020, 2005.06495.

[73]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[74]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.