A decentralized approach to elementary formation manoeuvres

This paper presents a decentralized formation control (the coupled dynamics approach) for executing elementary formation manoeuvres (EFM) for Hilare-type mobile robots. The concept of an EFM is presented. It is then shown that each of these EFMs possesses a common mathematical structure and thus may be executed by the same type of robot control. We present two EFM controls: the first control puts feedback on the relative motion and the global motion of each robot; and the second one adds inter-robot damping. The key advantage of our approach is the reduced communication among robots and the formation obtains certain robustness properties not available to other formation controls. We present the simulation and hardware results for each of these controls.

[1]  P. Wang,et al.  Synchronized Formation Rotation and Attitude Control of Multiple Free-Flying Spacecraft , 1997 .

[2]  Panagiotis Tsiotras Further passivity results for the attitude control problem , 1998, IEEE Trans. Autom. Control..

[3]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[4]  Paul Keng-Chieh Wang Navigation strategies for multiple autonomous mobile robots moving in formation , 1991, J. Field Robotics.

[5]  J. Wen,et al.  Attitude control without angular velocity measurement: a passivity approach , 1996, IEEE Trans. Autom. Control..

[6]  Stephen M. Rock,et al.  Symbolic dynamic modelling and analysis of object/robot-team systems with experiments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[7]  Randal W. Beard,et al.  A coordination architecture for spacecraft formation control , 2001, IEEE Trans. Control. Syst. Technol..

[8]  Hong Zhang,et al.  The use of perceptual cues in multi-robot box-pushing , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[9]  Claude Samson,et al.  Feedback control of a nonholonomic wheeled cart in Cartesian space , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[10]  Vijay Kumar,et al.  Decentralized control of cooperating mobile manipulators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[11]  Alessandro Astolfi,et al.  Exponential Stabilization of a Wheeled Mobile Robot Via Discontinuous Control , 1999 .

[12]  Hiroaki Yamaguchi,et al.  Adaptive formation control for distributed autonomous mobile robot groups , 1997, Proceedings of International Conference on Robotics and Automation.

[13]  R. Beard,et al.  Constellation Templates: An Approach to Autonomous Formation Flying , 1998 .

[14]  Fred Y. Hadaegh,et al.  Adaptive Control of Formation Flying Spacecraft for Interferometry , 1998 .

[15]  C. McInnes Autonomous ring formation for a planar constellation of satellites , 1995 .

[16]  J. Y. S. Luh,et al.  Coordination and control of a group of small mobile robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[17]  Georges Bastin,et al.  A hybrid strategy for the feedback stabilization of nonholonomic mobile robots , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[18]  Rachid Alami,et al.  Incremental mission allocation to a large team of robots , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[19]  O. J. Sordalen,et al.  Exponential stabilization of mobile robots with nonholonomic constraints , 1992 .

[20]  R. Ortega,et al.  On passivity‐based output feedback global stabilization of euler‐lagrange systems , 1995 .

[21]  William H. Beyer,et al.  CRC standard mathematical tables , 1976 .

[22]  Joel W. Burdick,et al.  Asymptotic stabilization of multiple nonholonomic mobile robots forming group formations , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[23]  Claude Samson,et al.  Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots , 1993, Int. J. Robotics Res..

[24]  Randal Beard Architecture and Algorithms for Constellation Control , 1998 .

[25]  Vijay Kumar,et al.  Controlling formations of multiple mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[26]  John T. Wen,et al.  Attitude control without angular velocity measurement: a passivity approach , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[27]  Eiichi Yoshida,et al.  Cooperative sweeping by multiple mobile robots , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[28]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[29]  R. Ortega,et al.  On passivity-based output feedback global stabilization of Euler-Lagrange systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[30]  Kar-Han Tan,et al.  Virtual structures for high-precision cooperative mobile robotic control , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[31]  Bradley S. Richardson,et al.  Multirobot automated indoor floor characterization team , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[32]  Xiaoping Yun,et al.  Line and circle formation of distributed physical mobile robots , 1997, J. Field Robotics.

[33]  P. Wang,et al.  Coordination and control of multiple microspacecraft moving in formation , 1996 .