Recent advances in the development of Li–air batteries

Abstract The global energy demand calls for more efficient storage systems. In this review, the state of the art of Li/air and Li/O 2 batteries is discussed with particular attention on the more recent findings regarding all the battery compartments. Both aqueous and non-aqueous systems are considered, and the most critical issues for better battery design are addressed. Whereas the predicted charge/discharge values for these devices do justify the intense research efforts performed nowadays, great problems are still present which must be overcome in order to make Li/air and Li/O 2 a reality for future large-scale applications.

[1]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[2]  T. Ishihara,et al.  Mesoporous β-MnO2 Air Electrode Modified with Pd for Rechargeability in Lithium-Air Battery , 2011 .

[3]  Eugene A. Goodilin,et al.  Protected anodes for lithium-air batteries , 2011 .

[4]  Yongyao Xia,et al.  The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery , 2009 .

[5]  N. Sammes,et al.  A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions , 2011 .

[6]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[7]  J. Read Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery , 2006 .

[8]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[9]  Jasim Uddin,et al.  Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)). , 2011, The journal of physical chemistry. A.

[10]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[11]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[12]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[13]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[14]  Ji‐Guang Zhang,et al.  Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes , 2011 .

[15]  Anil Date,et al.  Properties of Fuels , 2011 .

[16]  Meilin Liu,et al.  Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives , 2011 .

[17]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[18]  Kang Xu,et al.  Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes , 2011 .

[19]  Yong-Kook Choi,et al.  Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries , 2004 .

[20]  Shengbo Zhang,et al.  Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery , 2011 .

[21]  Xueliang Sun,et al.  Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries , 2011 .

[22]  Rajeev S. Assary,et al.  Computational Studies of Polysiloxanes: Oxidation Potentials and Decomposition Reactions , 2011 .

[23]  Jeffrey Read,et al.  Discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2010 .

[24]  Jürgen Garche,et al.  Encyclopedia of electrochemical power sources , 2009 .

[25]  Lei Jin,et al.  Titanium Containing γ‐MnO2 (TM) Hollow Spheres: One‐Step Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions , 2010 .

[26]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[27]  Benjamin Meyer,et al.  Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane , 2012 .

[28]  Jian Zhang,et al.  Air Dehydration Membranes for Nonaqueous Lithium–Air Batteries , 2010 .

[29]  Xiao‐Qing Yang,et al.  High Rate Oxygen Reduction in Non-aqueous Electrolytes with the Addition of Perfluorinated Additives , 2011 .

[30]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[31]  Jie Fu Superionic conductivity of glass-ceramics in the system Li 2O- Al 2O 3-TiO 2-P 2O 5 , 1997 .

[32]  Ji‐Guang Zhang,et al.  Ambient operation of Li/Air batteries , 2010 .

[33]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[34]  Petru Andrei,et al.  The Theoretical Energy Densities of Dual-Electrolytes Rechargeable Li-Air and Li-Air Flow Batteries , 2011 .

[35]  B. Kumar,et al.  Development of membranes and a study of their interfaces for rechargeable lithium–air battery , 2009 .

[36]  Z. Wen,et al.  Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery , 2012, Journal of Solid State Electrochemistry.

[37]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[38]  Wu Xu,et al.  Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment , 2009 .

[39]  Kang Xu,et al.  A non-aqueous electrolyte for the operation of Li/air battery in ambient environment , 2011 .

[40]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[41]  Duncan Graham,et al.  Oxygen reactions in a non-aqueous Li+ electrolyte. , 2011, Angewandte Chemie.

[42]  Haoshen Zhou,et al.  A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy , 2010 .

[43]  M. Armand,et al.  Building better batteries , 2008, Nature.

[44]  G. Cui,et al.  Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries. , 2011, Chemical communications.

[45]  Ping He,et al.  A Li-air fuel cell with recycle aqueous electrolyte for improved stability , 2010 .

[46]  M. Salomon,et al.  Primary Li-air cell development , 2011 .

[47]  Haoshen Zhou,et al.  N-Doped Graphene Nanosheet for Li-Air Fuel Cell under Acidic Conditions , 2012 .

[48]  Kai Xie,et al.  Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li–O2 batteries , 2012 .

[49]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[50]  D. Linden Handbook Of Batteries , 2001 .

[51]  Ping He,et al.  Preparation of mesocellular carbon foam and its application for lithium/oxygen battery , 2009 .

[52]  Sylvie Grugeon,et al.  Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. , 2010, Journal of the American Chemical Society.

[53]  W. Bennett,et al.  Hierarchically porous graphene as a lithium-air battery electrode. , 2011, Nano letters.

[54]  Venkataraman Thangadurai,et al.  Lithium ion conductivity of Li5+xBaxLa3−xTa2O12 (x = 0–2) with garnet-related structure in dependence of the barium content , 2007 .

[55]  Deyang Qu,et al.  Investigation of the Gas-Diffusion-Electrode Used as Lithium/Air Cathode in Non-aqueous Electrolyte and the Importance of Carbon Material Porosity , 2010 .

[56]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[57]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[58]  Z. Wen,et al.  Mesoporous Co3O4 with different porosities as catalysts for the lithium–oxygen cell , 2012 .

[59]  N. Imanishi,et al.  Lithium Dendrite Formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells , 2010 .

[60]  Jim P. Zheng,et al.  Preparation, Characterization and Electrochemical Catalytic Properties of Hollandite Ag2Mn8O16 for Li-Air Batteries , 2012 .

[61]  Z. Wen,et al.  A free-standing-type design for cathodes of rechargeable Li–O2 batteries , 2011 .

[62]  Wu Xu,et al.  Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries , 2010 .

[63]  Wu Xu,et al.  Effects of Nonaqueous Electrolytes on the Performance of Lithium/Air Batteries , 2010 .

[64]  Keith Scott,et al.  Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—Metal or oxide? , 2011 .

[65]  N. Imanishi,et al.  Aqueous Lithium/Air Rechargeable Batteries , 2011 .

[66]  Arumugam Manthiram,et al.  A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte , 2012 .

[67]  Ruoshi Li,et al.  Novel composite polymer electrolyte for lithium air batteries , 2010 .

[68]  John B. Goodenough,et al.  CoMn2O4 Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries , 2011 .

[69]  N. Sammes,et al.  Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries , 2009 .

[70]  Keith Scott,et al.  Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries , 2010 .

[71]  Bruno Scrosati,et al.  Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. , 2011, Angewandte Chemie.

[72]  M. Salomon,et al.  Methoxybenzene as an Electrolyte Solvent for the Primary Lithium Metal Air Battery , 2011 .

[73]  Xiangwu Zhang,et al.  Lithiumoxygen batteriesLimiting factors that affect performance , 2011 .

[74]  Haoshen Zhou,et al.  To draw an air electrode of a Li–air battery by pencil , 2011 .

[75]  Y. Park,et al.  Carbon nanotube/Co3O4 composite for air electrode of lithium-air battery , 2012, Nanoscale Research Letters.

[76]  Y. Ding,et al.  MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries , 2011 .

[77]  P. He,et al.  Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution. , 2011, Chemical communications.

[78]  Linda F. Nazar,et al.  Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. , 2012, Journal of the American Chemical Society.

[79]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[80]  K. Abraham,et al.  Highly Conductive PEO-like Polymer Electrolytes , 1997 .

[81]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[82]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[83]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[84]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[85]  Ping He,et al.  A lithium–air capacitor–battery based on a hybrid electrolyte , 2011 .

[86]  M. Salomon,et al.  Li-air batteries: A classic example of limitations owing to solubilities , 2007 .

[87]  Jun Lu,et al.  Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes , 2011 .

[88]  Odile Fichet,et al.  Development of a Lithium Air Rechargeable Battery , 2010, ECS Transactions.

[89]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[90]  M. Mastragostino,et al.  Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes , 2011 .

[91]  Christopher S. Johnson,et al.  Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li–O2 Cells , 2011 .

[92]  T. Ishihara,et al.  Pd / MnO2 Air Electrode Catalyst for Rechargeable Lithium/Air Battery , 2010 .

[93]  B. Kumar,et al.  Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries , 2011 .

[94]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[95]  R. Li,et al.  Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. , 2011, Chemical communications.

[96]  Shengbo Zhang,et al.  Oxygen reduction reaction catalyst on lithium/air battery discharge performance , 2011 .

[97]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[98]  Jagjit Nanda,et al.  Spectroscopic Characterization of Solid Discharge Products in Li–Air Cells with Aprotic Carbonate Electrolytes , 2011 .

[99]  P. He,et al.  The development of a new type of rechargeable batteries based on hybrid electrolytes. , 2010, ChemSusChem.

[100]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[101]  Shengbo Zhang,et al.  The effect of quaternary ammonium on discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2011 .

[102]  Sanjeev Mukerjee,et al.  Oxygen Electrode Rechargeability in an Ionic Liquid for the Li–Air Battery , 2011 .

[103]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .