Effects of Air Bearing Stiffness on a Hard Disk Drive Subject to Shock and Vibration

A finite element model of a hard disk drive (HDD) is developed to investigate the transient response of an operational HDD subject to shock and vibration. The air bearing stiffness of the head disk interface is determined from a finite element solution of the Reynolds equation and approximated with linear springs. The structural response is analyzed for several types of sliders with a wide range of air bearing stiffness. Results show the response of the head-disk interface subject to shock and the modes excited by vertical and lateral vibrations of the HDD.