Robust deadbeat pole assignment with gain constraints: an LMI optimization approach
暂无分享,去创建一个
[1] M. M. Fahmy,et al. Dead-beat control of linear discrete-time systems , 1983 .
[2] James Lam,et al. A gradient flow approach to the robust pole-placement problem , 1995 .
[3] Parameterization of the class of deadbeat controllers via the theory of decoupling , 1988 .
[4] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[5] N. Nichols,et al. Robust pole assignment in linear state feedback , 1985 .
[6] Hidenori Kimura,et al. Multivariable dead-beat control with robustness , 1988 .
[7] J. O'Reilly,et al. Parametric state-feedback control for arbitrary eigenvalue assignment with minimum sensitivity , 1989 .
[8] B. Leden,et al. Multivariable dead-beat control , 1977, Autom..
[9] James Lam,et al. Robust deadbeat regulation , 1997 .
[10] Explicit parameterization of state deadbeat controllers , 1992 .
[11] Shankar P. Bhattacharyya,et al. Robust and well‐conditioned eigenstructure assignment via sylvester's equation , 1983 .
[12] M. A. Murtaza. Railway managers—creative styles , 1997 .
[14] Katsuhisa Furuta,et al. State Variable Methods in Automatic Control , 1988 .
[15] Paul Van Dooren. Deadbeat control: A special inverse eigenvalue problem , 1984 .
[16] J. Lam,et al. Newton's approach to gain-controlled robust pole placement , 1997 .
[17] Dean K. Frederick,et al. Feedback Control Problems Using MATLAB and the Control System Toolbox , 1999 .
[18] Minimum-gain minimum-time deadbeat controllers , 1988 .
[19] S. Nash,et al. Approaches to robust pole assignment , 1989 .
[20] D. Luenberger. Canonical forms for linear multivariable systems , 1967, IEEE Transactions on Automatic Control.