Simultaneous Confidence Bands for Penalized Spline Estimators

In this article we construct simultaneous confidence bands for a smooth curve using penalized spline estimators. We consider three types of estimation methods: (a) as a standard (fixed effect) nonparametric model, (b) using the mixed-model framework with the spline coefficients as random effects, and (c) a full Bayesian approach. The volume-of-tube formula is applied for the first two methods and compared with Bayesian simultaneous confidence bands from a frequentist perspective. We show that the mixed-model formulation of penalized splines can help obtain, at least approximately, confidence bands with either Bayesian or frequentist properties. Simulations and data analysis support the proposed methods. The R package ConfBands accompanies the article.

[1]  Richard A. Davis,et al.  On Some Global Measures of the Deviations of Density Function Estimates , 2011 .

[2]  Gerda Claeskens,et al.  Asymptotic properties of penalized spline estimators , 2009 .

[3]  Xin Fu,et al.  Confidence bands in nonparametric regression , 2009 .

[4]  D. Ruppert,et al.  On the asymptotics of penalized splines , 2008 .

[5]  L. Fahrmeir,et al.  Some asymptotic results on generalized penalized spline smoothing , 2007 .

[6]  D. Ruppert,et al.  Spatially Adaptive Bayesian Penalized Splines With Heteroscedastic Errors , 2007 .

[7]  Andreas Brezger,et al.  Generalized structured additive regression based on Bayesian P-splines , 2006, Comput. Stat. Data Anal..

[8]  P. Hall,et al.  Theory for penalised spline regression , 2005 .

[9]  Leonhard Held,et al.  Simultaneous Posterior Probability Statements From Monte Carlo Output , 2004 .

[10]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[11]  L. Fahrmeir,et al.  PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .

[12]  Gerda Claeskens,et al.  Bootstrap confidence bands for regression curves and their derivatives , 2003 .

[13]  Jiayang Sun,et al.  Confidence bands in generalized linear models , 2000 .

[14]  David Ruppert,et al.  Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior: Comment , 1999 .

[15]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[16]  D. Freedman On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .

[17]  Jiayang Sun,et al.  CONFIDENCE BANDS FOR GROWTH AND RESPONSE CURVES , 1999 .

[18]  M. Wand,et al.  Comment on Shively , Kohn and WoodBabette , 1999 .

[19]  Xiaotong Shen,et al.  Local asymptotics for regression splines and confidence regions , 1998 .

[20]  Yingcun Xia,et al.  Bias‐corrected confidence bands in nonparametric regression , 1998 .

[21]  Jörg Polzehl,et al.  Simultaneous bootstrap confidence bands in nonparametric regression , 1998 .

[22]  C. Loader,et al.  Robustness of Tube Formula Based Confidence Bands , 1997 .

[23]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[24]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[25]  Jiayang Sun,et al.  Simultaneous confidence bands for linear regression with heteroscedastic errors , 1995 .

[26]  C. Loader,et al.  Simultaneous Confidence Bands for Linear Regression and Smoothing , 1994 .

[27]  D. Cox An Analysis of Bayesian Inference for Nonparametric Regression , 1993 .

[28]  Jiayang Sun Tail probabilities of the maxima of Gaussian random fields , 1993 .

[29]  P. Hall On convergence rates of suprema , 1991 .

[30]  Iain M. Johnstone,et al.  Hotelling's Theorem on the Volume of Tubes: Some Illustrations in Simultaneous Inference and Data Analysis , 1990 .

[31]  Bootstrap confidence bands , 1990 .

[32]  Wolfgang Karl Härdle,et al.  Asymptotic maximal deviation of M-smoothers , 1989 .

[33]  Douglas Nychka,et al.  Bayesian Confidence Intervals for Smoothing Splines , 1988 .

[34]  D. M. Titterington,et al.  On confidence bands in nonparametric density estimation and regression , 1988 .

[35]  F. O’Sullivan A Statistical Perspective on Ill-posed Inverse Problems , 1986 .

[36]  Daniel Q. Naiman,et al.  Conservative Confidence Bands in Curvilinear Regression , 1986 .

[37]  Jerome Sacks,et al.  Confidence Bands for Regression Functions , 1985 .

[38]  G. Wahba Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .

[39]  A. Gorin ON THE VOLUME OF TUBES , 1983 .

[40]  Eli M. Bower Comments and rejoinder , 1974 .

[41]  D. C. Bowden,et al.  Simultaneous Confidence Bands for Linear Regression Models , 1970 .

[42]  H. Hotelling Tubes and Spheres in n-Spaces, and a Class of Statistical Problems , 1939 .