Synthesized soliton crystals

Dissipative Kerr soliton (DKS) featuring broadband coherent frequency comb with compact size and low power consumption, provides an unparalleled tool for nonlinear physics investigation and precise measurement applications. However, the complex nonlinear dynamics generally leads to stochastic soliton formation process and makes it highly challenging to manipulate soliton number and temporal distribution in the microcavity. Here, synthesized and reconfigurable soliton crystals (SCs) are demonstrated by constructing a periodic intra-cavity potential field, which allows deterministic SCs synthesis with soliton numbers from 1 to 32 in a monolithic integrated microcavity. The ordered temporal distribution coherently enhanced the soliton crystal comb lines power up to 3 orders of magnitude in comparison to the single-soliton state. The interaction between the traveling potential field and the soliton crystals creates periodic forces on soliton and results in forced soliton oscillation. Our work paves the way to effectively manipulate cavity solitons. The demonstrated synthesized SCs offer reconfigurable temporal and spectral profiles, which provide compelling advantages for practical applications such as photonic radar, satellite communication and radio-frequency filter.

[1]  S. Chu,et al.  Laser cavity-soliton microcombs , 2019, Nature Photonics.

[2]  Arslan S. Raja,et al.  Reconfigurable radiofrequency filters based on versatile soliton microcombs , 2020, Nature communications.

[3]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[4]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[5]  Michael L. Gorodetsky,et al.  Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators , 2016, Nature Physics.

[6]  Michal Lipson,et al.  Photonic-chip-based frequency combs , 2019, Nature Photonics.

[7]  A. Matsko,et al.  Orthogonally polarized frequency comb generation from a Kerr comb via cross-phase modulation. , 2019, Optics letters.

[8]  Wei Zhao,et al.  Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator , 2018, AIP Advances.

[9]  Wei Zhao,et al.  Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing , 2016, Scientific Reports.

[10]  A. Matsko,et al.  Optical lattice trap for Kerr solitons , 2017, 1704.00024.

[11]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[12]  Michal Lipson,et al.  Silicon-chip-based mid-infrared dual-comb spectroscopy , 2016, Nature Communications.

[13]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[14]  Roberto Morandotti,et al.  Ultra-dense optical data transmission over standard fibre with a single chip source , 2020, Nature Communications.

[15]  Kerry J. Vahala,et al.  Stokes solitons in optical microcavities , 2016, Nature Physics.

[16]  K. Vahala,et al.  Optical frequency combs: Coherently uniting the electromagnetic spectrum , 2020, Science.

[17]  Erwan Lucas,et al.  Massively parallel coherent laser ranging using a soliton microcomb , 2019, Nature.

[18]  V. Brasch,et al.  Photonic chip–based optical frequency comb using soliton Cherenkov radiation , 2014, Science.

[19]  X. Yi,et al.  Vernier frequency division with dual-microresonator solitons , 2020, Nature Communications.

[20]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[21]  T. Kippenberg,et al.  Dynamics of soliton crystals in optical microresonators , 2017, Nature Physics.

[22]  M. Karpov,et al.  Breathing dissipative solitons in optical microresonators , 2016, Nature Communications.

[23]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[24]  T. Ideguchi,et al.  Adaptive dynamic range shift (ADRIFT) quantitative phase imaging , 2020, Light, science & applications.

[25]  Shuangyou Zhang,et al.  Spectral extension and synchronization of microcombs in a single microresonator , 2020, Nature Communications.

[26]  R. Morandotti,et al.  Micro-combs: A novel generation of optical sources , 2017 .

[27]  R. Morandotti,et al.  All-optical signal processing platforms for CMOS compatible integrated nonlinear optics , 2014, 1404.3775.

[28]  Wei Zhao,et al.  Repetition Rate Multiplication Pulsed Laser Source Based on a Microring Resonator , 2017 .

[29]  S. Diddams,et al.  Soliton crystals in Kerr resonators , 2016, 1610.00080.

[30]  T. Tanabe,et al.  Review on microresonator frequency combs , 2019, Japanese Journal of Applied Physics.

[31]  Kun Qiu,et al.  Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities , 2019, Light: Science & Applications.

[32]  Yanne K. Chembo,et al.  Kerr optical frequency combs: theory, applications and perspectives , 2016 .

[33]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[34]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2017, Nature.

[35]  Q. Lin,et al.  Perfect Soliton Crystals on Demand , 2019, 2020 Conference on Lasers and Electro-Optics (CLEO).

[36]  Xinbai Li,et al.  Single-mode dispersive waves and soliton microcomb dynamics , 2016, Nature Communications.

[37]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[38]  Steven A. Miller,et al.  Breather soliton dynamics in microresonators , 2016, Nature Communications.

[39]  Wei Zhao,et al.  Quantum Key Distribution with On‐Chip Dissipative Kerr Soliton , 2020, Laser & Photonics Reviews.

[40]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[41]  Lei Wang,et al.  Robust soliton crystals in a thermally controlled microresonator. , 2018, Optics letters.

[42]  K. Srinivasan,et al.  Ultra-Broadband Soliton Microcomb Through Synthetic Dispersion , 2021 .