The Conjugate Unscented Transform — An approach to evaluate multi-dimensional expectation integrals

This paper presents an extension to the unscented transformation to evaluate expectation integrals in general N-dimensional space by satisfying higher order moment equations. New sets of sigma points are defined to satisfy moment equations up to eighth order. The proposed methodology can be used as an efficient alternative to Gaussian quadrature rule with significantly reduced number of function evaluations but without any loss in accuracy. Numerical simulation results illustrates the effectiveness of the proposed methodology in computing high dimension expectation integrals with significantly reduced number of function evaluations.

[1]  Philip Rabinowitz,et al.  Perfectly symmetric two-dimensional integration formulas with minimal numbers of points , 1969 .

[2]  Anny Haegemans,et al.  Cubature formulas of degree nine for symmetric planar regions , 1975 .

[3]  A. H. Stroud,et al.  Some fifth degree integration formulas for symmetric regions , 1966 .

[4]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[5]  Yuanxin Wu,et al.  A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.

[6]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[7]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[8]  D. Xiu Numerical integration formulas of degree two , 2008 .

[9]  A. H. Stroud,et al.  Some Seventh Degree Integration Formulas for Symmetric Regions , 1967 .

[10]  R. Franke,et al.  Minimal Point Cubatures of Precision Seven for Symmetric Planar Regions , 1973 .

[11]  A. Stroud,et al.  Numerical integration formulas of degree two , 1960 .

[12]  Jean-Francois Lévesque Second-Order Simplex Sigma Points for Nonlinear Estimation , 2006 .

[13]  Jonathan M. Nichols,et al.  A general Isserlis theorem for mixed-Gaussian random variables , 2011 .

[14]  T. Singh,et al.  The higher order unscented filter , 2003, Proceedings of the 2003 American Control Conference, 2003..

[15]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.