The Conjugate Unscented Transform — An approach to evaluate multi-dimensional expectation integrals
暂无分享,去创建一个
[1] Philip Rabinowitz,et al. Perfectly symmetric two-dimensional integration formulas with minimal numbers of points , 1969 .
[2] Anny Haegemans,et al. Cubature formulas of degree nine for symmetric planar regions , 1975 .
[3] A. H. Stroud,et al. Some fifth degree integration formulas for symmetric regions , 1966 .
[4] S. Haykin,et al. Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.
[5] Yuanxin Wu,et al. A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.
[6] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[7] Hugh F. Durrant-Whyte,et al. A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..
[8] D. Xiu. Numerical integration formulas of degree two , 2008 .
[9] A. H. Stroud,et al. Some Seventh Degree Integration Formulas for Symmetric Regions , 1967 .
[10] R. Franke,et al. Minimal Point Cubatures of Precision Seven for Symmetric Planar Regions , 1973 .
[11] A. Stroud,et al. Numerical integration formulas of degree two , 1960 .
[12] Jean-Francois Lévesque. Second-Order Simplex Sigma Points for Nonlinear Estimation , 2006 .
[13] Jonathan M. Nichols,et al. A general Isserlis theorem for mixed-Gaussian random variables , 2011 .
[14] T. Singh,et al. The higher order unscented filter , 2003, Proceedings of the 2003 American Control Conference, 2003..
[15] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.