Approximate infinite-dimensional Region Covariance Descriptors for image classification

We introduce methods to estimate infinite-dimensional Region Covariance Descriptors (RCovDs) by exploiting two feature mappings, namely random Fourier features and the Nyström method. In general, infinite-dimensional RCovDs offer better discriminatory power over their low-dimensional counterparts. However, the underlying Riemannian structure, i.e., the manifold of Symmetric Positive Definite (SPD) matrices, is out of reach to great extent for infinite-dimensional RCovDs. To overcome this difficulty, we propose to approximate the infinite-dimensional RCovDs by making use of the aforementioned explicit mappings. We will empirically show that the proposed finite-dimensional approximations of infinite-dimensional RCovDs consistently outperform the low-dimensional RCovDs for image classification task, while enjoying the Riemannian structure of the SPD manifolds. Moreover, our methods achieve the state-of-the-art performance on three different image classification tasks.

[1]  Larry S. Davis,et al.  Covariance discriminative learning: A natural and efficient approach to image set classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Hongdong Li,et al.  Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Mehrtash Tafazzoli Harandi,et al.  Material Classification on Symmetric Positive Definite Manifolds , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[4]  Brian C. Lovell,et al.  Sparse Coding on Symmetric Positive Definite Manifolds Using Bregman Divergences , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[5]  Alexander J. Smola,et al.  Fastfood: Approximate Kernel Expansions in Loglinear Time , 2014, ArXiv.

[6]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .

[7]  Andreas Wendel,et al.  Scene Categorization from Tiny Images , 2007 .

[8]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[9]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[10]  R. Bhatia Positive Definite Matrices , 2007 .

[11]  Mehrtash Tafazzoli Harandi,et al.  Bregman Divergences for Infinite Dimensional Covariance Matrices , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Roman Rosipal,et al.  Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space , 2002, J. Mach. Learn. Res..

[13]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Ida-Maria Sintorn,et al.  Virus Texture Analysis Using Local Binary Patterns and Radial Density Profiles , 2011, CIARP.

[16]  Brian C. Lovell,et al.  Fisher tensors for classifying human epithelial cells , 2014, Pattern Recognit..

[17]  隆志 佐野 Rajendra Bhatia: Positive Definite Matrices, Princeton Ser. Appl. Math., Princeton Univ. Press, 2007年,x+254ページ. , 2013 .

[18]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[19]  AI Koan,et al.  Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning , 2008, NIPS.

[20]  Roman Rosipal,et al.  Overview and Recent Advances in Partial Least Squares , 2005, SLSFS.

[21]  Andrew Zisserman,et al.  Efficient additive kernels via explicit feature maps , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  David A. Forsyth,et al.  Non-parametric Filtering for Geometric Detail Extraction and Material Representation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Vittorio Murino,et al.  Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces , 2014, NIPS.

[24]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[25]  Brian C. Lovell,et al.  Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach , 2012, ECCV.

[26]  Bernhard Schölkopf,et al.  Randomized Nonlinear Component Analysis , 2014, ICML.

[27]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .