Accuracy and Precision of Tidal Wetland Soil Carbon Mapping in the Conterminous United States

[1]  V. Caron,et al.  United states. , 2018, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[2]  J. Smoak,et al.  Coastal Blue Carbon Assessment of Mangroves, Salt Marshes, and Salt Barrens in Tampa Bay, Florida, USA , 2018, Estuaries and Coasts.

[3]  K. Whelan,et al.  Calibrated density profiles of Caribbean mangrove peat sequences from computed tomography for assessment of peat preservation, compaction, and impacts on sea-level reconstructions , 2018, Quaternary Research.

[4]  Marian Eriksson,et al.  The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States , 2017, Global change biology.

[5]  Jianwu Tang,et al.  Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention , 2017, Scientific Reports.

[6]  Donald R. Schoolmaster,et al.  Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands. , 2017, Ecology.

[7]  J. Smoak,et al.  Reconstructing Common Era relative sea-level change on the Gulf Coast of Florida , 2017 .

[8]  M. Simard,et al.  Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils , 2017 .

[9]  C. Lovelock,et al.  Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds , 2017, Front. Mar. Sci..

[10]  F. Rubel,et al.  The climate of the European Alps: Shift of very high resolution Köppen-Geiger climate zones 1800–2100 , 2017 .

[11]  L. Schile,et al.  Limits on carbon sequestration in arid blue carbon ecosystems. , 2017, Ecological applications : a publication of the Ecological Society of America.

[12]  P. Macreadie,et al.  Carbon sequestration by Australian tidal marshes , 2017, Scientific Reports.

[13]  E. Mcleod,et al.  Clarifying the role of coastal and marine systems in climate mitigation , 2017 .

[14]  A. Nahlik,et al.  Carbon storage in US wetlands , 2016, Nature Communications.

[15]  Christopher K. Sommerfield,et al.  Stability of organic carbon accumulating in Spartina alterniflora-dominated salt marshes of the Mid-Atlantic U.S. , 2016 .

[16]  M. Simard,et al.  The role of economic, policy, and ecological factors in estimating the value of carbon stocks in Everglades mangrove forests, South Florida, USA , 2016 .

[17]  Sarai C. Piazza,et al.  Determining the Spatial Variability of Wetland Soil Bulk Density, Organic Matter, and the Conversion Factor between Organic Matter and Organic Carbon across Coastal Louisiana, U.S.A. , 2016, Journal of Coastal Research.

[18]  J. Day,et al.  Fate of Soil Organic Carbon During Wetland Loss , 2016, Wetlands.

[19]  D. Maher,et al.  Are global mangrove carbon stocks driven by rainfall? , 2016 .

[20]  S. Temmerman,et al.  The importance of an estuarine salinity gradient on soil organic carbon stocks of tidal marshes , 2016 .

[21]  C. Sommerfield,et al.  Marsh accretion and sediment accumulation in a managed tidal wetland complex of Delaware Bay , 2016 .

[22]  C. Hopkinson,et al.  Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state , 2016, Earth's future.

[23]  P. Macreadie,et al.  Sedimentary Factors are Key Predictors of Carbon Storage in SE Australian Saltmarshes , 2016, Ecosystems.

[24]  Sergio Fagherazzi,et al.  Overestimation of marsh vulnerability to sea level rise , 2016 .

[25]  A. Sutton‐Grier,et al.  Keys to successful blue carbon projects: Lessons learned from global case studies , 2016 .

[26]  C. Hupp,et al.  Contemporary Deposition and Long-Term Accumulation of Sediment and Nutrients by Tidal Freshwater Forested Wetlands Impacted by Sea Level Rise , 2016, Estuaries and Coasts.

[27]  J. Megonigal,et al.  Elevated CO2 promotes long‐term nitrogen accumulation only in combination with nitrogen addition , 2016, Global change biology.

[28]  C. Hupp,et al.  Head‐of‐tide bottleneck of particulate material transport from watersheds to estuaries , 2015 .

[29]  D. Bates,et al.  Linear Mixed-Effects Models using 'Eigen' and S4 , 2015 .

[30]  T. Hill,et al.  Coastal wetland response to sea level rise in Connecticut and New York , 2015 .

[31]  A. Giblin,et al.  Marsh‐atmosphere CO2 exchange in a New England salt marsh , 2015 .

[32]  C. Craft,et al.  Carbon Sequestration in Tidal Salt Marshes of the Northeast United States , 2015, Environmental Management.

[33]  Sorin C. Popescu,et al.  The role of elevation, relative sea-level history and vegetation transition in determining carbon distribution in Spartina alterniflora dominated salt marshes , 2015 .

[34]  T. J. Smith,et al.  Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades , 2014 .

[35]  I. Nagelkerken,et al.  Mechanisms and ecological role of carbon transfer within coastal seascapes , 2014, Biological reviews of the Cambridge Philosophical Society.

[36]  S. Y. Lee,et al.  Carbon accumulation rates in salt marsh sediments suggest high carbon storage capacity , 2013 .

[37]  M. Kirwan,et al.  Tidal wetland stability in the face of human impacts and sea-level rise , 2013, Nature.

[38]  Inigo J. Losada,et al.  The role of coastal plant communities for climate change mitigation and adaptation , 2013 .

[39]  B. G. Lockaby,et al.  The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands , 2013, Biogeochemistry.

[40]  E. Watson,et al.  Late Holocene Marsh Expansion in Southern San Francisco Bay, California , 2013, Estuaries and Coasts.

[41]  S. C. Anisfeld,et al.  Use of lead isotopes for developing chronologies in recent salt-marsh sediments , 2012 .

[42]  D. Donato,et al.  Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems , 2012, PloS one.

[43]  A. Gallego-Sala,et al.  Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length , 2012 .

[44]  L. Richards,et al.  National Wetlands Inventory , 2012 .

[45]  Carlos M. Duarte,et al.  A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 , 2011 .

[46]  Y. J. Xu,et al.  Scale Effects of Geographical Soil Datasets on Soil Carbon Estimation in Louisiana, USA: A Comparison of STATSGO and SSURGO , 2011 .

[47]  J. Drexler Peat Formation Processes Through the Millennia in Tidal Marshes of the Sacramento–San Joaquin Delta, California, USA , 2011 .

[48]  J. L. Gallagher,et al.  Salt Marsh Carbon Pool Distribution in a Mid-Atlantic Lagoon, USA: Sea Level Rise Implications , 2011, Wetlands.

[49]  Glenn R. Guntenspergen,et al.  Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change , 2009 .

[50]  T. Brown,et al.  Peat Accretion Histories During the Past 6,000 Years in Marshes of the Sacramento–San Joaquin Delta, CA, USA , 2009 .

[51]  J. Drexler,et al.  The legacy of wetland drainage on the remaining peat in the Sacramento — San Joaquin Delta, California, USA , 2009, Wetlands.

[52]  J. Kindle,et al.  Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment , 2009 .

[53]  C. Périé,et al.  Organic carbon, organic matter and bulk density relationships in boreal forest soils , 2008 .

[54]  C. Craft Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S tidal marshes , 2007 .

[55]  R. Delaune,et al.  Marsh vertical accretion via vegetative growth , 2006 .

[56]  Beverly J. Johnson,et al.  Middle to late Holocene fluctuations of C3 and C4 vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine , 2006 .

[57]  D. Cahoon,et al.  Global carbon sequestration in tidal, saline wetland soils , 2003 .

[58]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[59]  I. Anderson,et al.  Sediment deposition and accretion in a Mid-Atlantic (U.S.A.) tidal freshwater marsh , 2002 .

[60]  J. Callaway,et al.  Vertical accretion rates and heavy metal chronologies in wetland sediments of the Tijuana Estuary , 2001 .

[61]  Russell Congalton,et al.  Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Second Edition , 1998 .

[62]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[63]  J. Cochran,et al.  Atmospheric Deposition of Metals to Coastal Waters (Long Island Sound, New York U.S.A.): Evidence from Saltmarsh Deposits , 1998 .

[64]  E. D. Seneca,et al.  Loss on ignition and kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: Calibration with dry combustion , 1991 .

[65]  R. Good,et al.  Rates of sediment accumulation in a tidal freshwater marsh , 1990 .

[66]  Meagan Eagle Gonneea Jennifer A. O'Keefe Suttles Kevin D. Kroeger Collection, Analysis, and Age-Dating of Sediment Cores from Salt Marshes on the South Shore of Cape Cod, Massachusetts, From 2013 Through 2014 , 2018 .

[67]  Sharon W. Waltman,et al.  Distribution of Soil Organic Carbon in the Conterminous United States , 2014 .

[68]  D. Reed,et al.  COASTAL PROTECTION AND RESTORATION AUTHORITY , 2013 .

[69]  L. H. Beckett Subsidence, accretion, and elevation trends in estuarine wetlands and relationships to salinity and sediment stratigraphy , 2012 .

[70]  Brady R. Couvillion,et al.  Land area change in coastal Louisiana from 1932 to 2010 , 2011 .

[71]  Sarai C. Piazza,et al.  Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities , 2011 .

[72]  K. Fennel,et al.  Modeling the dynamics of continental shelf carbon. , 2011, Annual review of marine science.

[73]  L. Windham-Myers,et al.  Biogeochemical processes in an urban, restored wetland of San Francisco Bay, California, 2007-2009; methods and data for plant, sediment and water parameters , 2010 .

[74]  K. Barton MuMIn : multi-model inference, R package version 0.12.0 , 2009 .

[75]  N. H. Ravindranath,et al.  2006 IPCC Guidelines for National Greenhouse Gas Inventories , 2006 .

[76]  André F. Lotter,et al.  Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results , 2001 .

[77]  C. Kroeze N2O from animal waste. Methodology according to IPCC Guidelines for National Greenhouse Gas Inventories. , 1997 .

[78]  Harry H. Roberts,et al.  Relationship between vegetation and soil formation in a rapidly submerging coastal marsh , 1993 .

[79]  J. Callaway,et al.  LSU Digital Commons LSU Digital Commons Carbon Sequestration And Sediment Accretion In San Francisco Carbon Sequestration And Sediment Accretion In San Francisco Bay Tidal Wetlands Bay Tidal Wetlands , 2022 .