Enhanced Production and Control of Liquid Alkanes in the Hydrogenolysis of Polypropylene over Shaped Ru/CeO2 Catalysts

[1]  David J. Morgan,et al.  Photoelectron spectroscopy of ceria: Reduction, quantification and the myth of the vacancy peak in XPS analysis , 2023, Surface and Interface Analysis.

[2]  Shuyan Song,et al.  Boosting Polyethylene Hydrogenolysis Performance of Ru-CeO2 Catalysts by Finely Regulating the Ru Sizes. , 2023, Small.

[3]  Youyong Li,et al.  Site-Selective Polyolefin Hydrogenolysis on Atomic Ru for Methanation Suppression and Liquid Fuel Production , 2023, Research.

[4]  Xiao-hui Liu,et al.  Enhanced Production of Liquid Alkanes from Waste Polyethylene via the Electronic Effect‐Favored Csecondary−Csecondary Bond Cleavage , 2022, ChemCatChem.

[5]  Ryan A. Hackler,et al.  Effect of Macro- and Microstructures on Catalytic Hydrogenolysis of Polyolefins , 2022, Macromolecules.

[6]  Gerhard R. Wittreich,et al.  Multiscale Modeling of Hydrogenolysis of Ethane and Propane on Ru(0001): Implications for Plastics Recycling , 2022, Applied Catalysis B: Environmental.

[7]  Xianzhi Fu,et al.  Photothermal-Catalyzing CO2 Methanation over Different-Shaped CeO2-Based Ru Nanoparticles , 2022, Energy & Fuels.

[8]  Shourong Zheng,et al.  Strong Ru-CeO2 interaction boosts catalytic activity and stability of Ru supported on CeO2 nanocube for soot oxidation , 2022, Journal of Catalysis.

[9]  L. Kovarik,et al.  Disordered, Sub-Nanometer Ru Structures on CeO2 are Highly Efficient and Selective Catalysts in Polymer Upcycling by Hydrogenolysis , 2022, ACS Catalysis.

[10]  Ryan A. Hackler,et al.  Scalable Synthesis of Pt/SrTiO3 Hydrogenolysis Catalysts in Pursuit of Manufacturing-Relevant Waste Plastic Solutions. , 2021, ACS applied materials & interfaces.

[11]  J. Lange Managing Plastic Waste─Sorting, Recycling, Disposal, and Product Redesign , 2021, ACS Sustainable Chemistry & Engineering.

[12]  Jason Y. C. Lim,et al.  Polyolefins and Polystyrene as Chemical Resources for a Sustainable Future: Challenges, Advances, and Prospects , 2021, ACS Materials Letters.

[13]  K. Syberg,et al.  A review of the plastic value chain from a circular economy perspective. , 2021, Journal of environmental management.

[14]  D. Lozano‐Castelló,et al.  Effect of Ru loading on Ru/CeO2 catalysts for CO2 methanation , 2021, Molecular Catalysis.

[15]  Antonio J. Martín,et al.  Direct Conversion of Polypropylene into Liquid Hydrocrabons on Carbon-Supported Platinum Catalysts. , 2021, ChemSusChem.

[16]  D. Vlachos,et al.  Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia , 2021, JACS Au.

[17]  D. Vlachos,et al.  Polypropylene Plastic Waste Conversion to Lubricants over Ru/TiO2 Catalysts , 2021, ACS Catalysis.

[18]  Hongfei Lin,et al.  Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst , 2021, Chem Catalysis.

[19]  K. Tomishige,et al.  Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes , 2021 .

[20]  B. Weckhuysen,et al.  Plastic Waste Conversion over a Refinery Waste Catalyst , 2021, Angewandte Chemie.

[21]  G. Hutchings,et al.  Gas Phase Glycerol Valorization over Ceria Nanostructures with Well-Defined Morphologies , 2021, ACS catalysis.

[22]  D. Vlachos,et al.  Plastic waste to fuels by hydrocracking at mild conditions , 2021, Science Advances.

[23]  Yuriy Román‐Leshkov,et al.  Tandem Heterogeneous Catalysis for Polyethylene Depolymerization via an Olefin-Intermediate Process , 2021, ACS sustainable chemistry & engineering.

[24]  G. Huber,et al.  Catalytic Hydrogenolysis of Polyolefins into Alkanes , 2020, ACS Central Science.

[25]  A. Bardow,et al.  Towards a circular economy for plastic packaging wastes – the environmental potential of chemical recycling , 2020 .

[26]  Anne M. LaPointe,et al.  Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization , 2020, Science.

[27]  Joshua C. Worch,et al.  100th Anniversary of Macromolecular Science Viewpoint: Toward Catalytic Chemical Recycling of Waste (and Future) Plastics. , 2020, ACS macro letters.

[28]  Ryan A. Hackler,et al.  Catalytic upcycling of high-density polyethylene via a processive mechanism , 2020, Nature Catalysis.

[29]  Yuriy Román‐Leshkov,et al.  Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based Catalysts under Mild Conditions , 2020, JACS Au.

[30]  I. Hermans,et al.  The Use of Heterogeneous Catalysis in the Chemical Valorization of Plastic Waste. , 2020, ChemSusChem.

[31]  Lorena Vega,et al.  Generalized gradient approximation adjusted to transition metals properties: Key roles of exchange and local spin density , 2020, J. Comput. Chem..

[32]  A. Roldan,et al.  Biomass hydrodeoxygenation catalysts innovation from atomistic activity predictors , 2020, Philosophical Transactions of the Royal Society A.

[33]  Simson Wu,et al.  Removal of Hydrogen Poisoning by Electrostatically Polar MgO Support for Low-Pressure NH3 Synthesis at a High Rate over the Ru Catalyst , 2020, ACS Catalysis.

[34]  Ana M. Santos co‐oxidation , 2020, Catalysis from A to Z.

[35]  M. Usman,et al.  Composite zeolite beta catalysts for catalytic hydrocracking of plastic waste to liquid fuels , 2020, Materials for Renewable and Sustainable Energy.

[36]  Robin J. White,et al.  Beyond Mechanical Recycling: Giving New Life to Plastic Waste , 2020, Angewandte Chemie.

[37]  G. Huber,et al.  The Chemistry and Kinetics of Polyethylene Pyrolysis: A Feedstock to Produce Fuels and Chemicals. , 2020, ChemSusChem.

[38]  D. Cullen,et al.  Distribution and Valence State of Ru Species on CeO2 Supports: Support Shape Effect and Its Influence on CO Oxidation , 2019, ACS Catalysis.

[39]  Andreas Heyden,et al.  Upcycling Single-Use Polyethylene into High-Quality Liquid Products , 2019, ACS central science.

[40]  Zili Wu,et al.  Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry , 2019, ACS Catalysis.

[41]  E. Chen,et al.  Future Directions for Sustainable Polymers , 2019, Trends in Chemistry.

[42]  F. Tao,et al.  Ceria Nanocrystals Supporting Pd for Formic Acid Electrocatalytic Oxidation: Prominent Polar Surface Metal Support Interactions , 2019, ACS Catalysis.

[43]  Angelica D. Benavidez,et al.  CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets , 2019, Applied Catalysis B: Environmental.

[44]  Chun-Hua Yan,et al.  Low-Temperature CO2 Methanation over CeO2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect , 2018 .

[45]  H. Jeong,et al.  Critical role of (100) facets on Γ-Al2O3 for ethanol dehydration: Combined efforts of morphology-controlled synthesis and TEM study , 2018 .

[46]  F. Illas,et al.  Jacob's Ladder as Sketched by Escher: Assessing the Performance of Broadly Used Density Functionals on Transition Metal Surface Properties. , 2018, Journal of chemical theory and computation.

[47]  M. Hakkarainen,et al.  Trash to Treasure : Microwave-Assisted Conversion of Polyethylene to Functional Chemicals , 2017 .

[48]  R. Geyer,et al.  Production, use, and fate of all plastics ever made , 2017, Science Advances.

[49]  J. Llorca,et al.  Ceria Catalysts at Nanoscale: How Do Crystal Shapes Shape Catalysis? , 2017 .

[50]  Jeannette M. García,et al.  Chemical recycling of waste plastics for new materials production , 2017 .

[51]  J. Llorca,et al.  Surface Faceting and Reconstruction of Ceria Nanoparticles. , 2017, Angewandte Chemie.

[52]  A. Belyi,et al.  Nonoxidative conversion of methane and n-pentane over a platinum/alumina catalyst , 2016, Kinetics and Catalysis.

[53]  F. Abnisa,et al.  A review on pyrolysis of plastic wastes , 2016 .

[54]  D. Morgan Resolving ruthenium: XPS studies of common ruthenium materials , 2015 .

[55]  Min Wei,et al.  Catalytic behavior of supported Ru nanoparticles on the {1 0 0}, {1 1 0}, and {1 1 1} facet of CeO2 , 2015 .

[56]  Jaya Pal,et al.  Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. , 2015, Nanoscale.

[57]  Jakub Szlachetko,et al.  Catalytically Active and Spectator Ce(3+) in Ceria-Supported Metal Catalysts. , 2015, Angewandte Chemie.

[58]  Haojun Huang,et al.  Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene , 2014 .

[59]  F. Illas,et al.  Bulk Properties of Transition Metals: A Challenge for the Design of Universal Density Functionals. , 2014, Journal of chemical theory and computation.

[60]  Francesc Illas,et al.  Understanding the reactivity of metallic nanoparticles: beyond the extended surface model for catalysis. , 2014, Chemical Society reviews.

[61]  E. Iglesia,et al.  Transition-state enthalpy and entropy effects on reactivity and selectivity in hydrogenolysis of n-alkanes. , 2013, Journal of the American Chemical Society.

[62]  Glenn Jones,et al.  Rationalization of interactions in precious metal/ceria catalysts using the d-band center model. , 2013, Angewandte Chemie.

[63]  F. Illas,et al.  Establishing the Accuracy of Broadly Used Density Functionals in Describing Bulk Properties of Transition Metals. , 2013, Journal of chemical theory and computation.

[64]  Wenjie Shen,et al.  Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. , 2012, Journal of the American Chemical Society.

[65]  Hsin‐Tsung Chen First-Principles Study of CO Adsorption and Oxidation on Ru-Doped CeO2(111) Surface , 2012 .

[66]  M. Mihaylov,et al.  Nature of the Polycarbonyl Species on Ru/ZrO2: Reassignment of Some Carbonyl Bands , 2011 .

[67]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[68]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[69]  J. Baeyens,et al.  Recycling and recovery routes of plastic solid waste (PSW): a review. , 2009, Waste management.

[70]  Robert E. Dvorak,et al.  Plastics recycling: challenges and opportunities , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[71]  Jean Rouquerol,et al.  Reporting Physisorption Data for Gas/Solid Systems , 2008 .

[72]  Ya-Wen Zhang,et al.  Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. , 2005, The journal of physical chemistry. B.

[73]  S. C. Parker,et al.  The electronic structure of oxygen vacancy defects at the low index surfaces of ceria , 2005 .

[74]  D. Ramaker,et al.  Three-site model for hydrogen adsorption on supported platinum particles: influence of support ionicity and particle size on the hydrogen coverage. , 2005, Journal of the American Chemical Society.

[75]  K. Hadjiivanov,et al.  FTIR study of CO interaction with Cu/TiO2 , 2003 .

[76]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[77]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[78]  K. Hadjiivanov,et al.  FTIR Study of CO Interaction with Ru/TiO2Catalysts , 1998 .

[79]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[80]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[81]  Hafner,et al.  Theory of the crystal structures of selenium and tellurium: The effect of generalized-gradient corrections to the local-density approximation. , 1994, Physical review. B, Condensed matter.

[82]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[83]  M. Romeo,et al.  XPS Study of the reduction of cerium dioxide , 1993 .

[84]  C. Peden,et al.  Monolayer and multilayer growth of Cu on the Ru(0001) surface , 1986 .

[85]  J. Goodwin,et al.  Particle size dependence for CO chemisorption on supported Ru catalysts , 1982 .

[86]  K. Sing,et al.  Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional) , 1982 .

[87]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[88]  Ryan A. Hackler,et al.  Synthesis of Platinum Nanoparticles on Strontium Titanate Nanocuboids via Surface Organometallic Grafting for the Catalytic Hydrogenolysis of Plastic Waste , 2023, Journal of Materials Chemistry A.

[89]  M. Pawlyta,et al.  In situ observation of highly oxidized Ru species in Ru/CeO2 catalyst under propane oxidation , 2022, Journal of Materials Chemistry A.

[90]  D. Vlachos,et al.  Polyolefin plastic waste hydroconversion to fuels, lubricants, and waxes: a comparative study , 2022, Reaction Chemistry & Engineering.

[91]  J. Lercher,et al.  Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes , 2022, Reaction Chemistry & Engineering.

[92]  I. Madufor,et al.  Plastics waste management: A review of pyrolysis technology , 2021, Clean Technologies and Recycling.

[93]  James Sherwood Closed-Loop Recycling of Polymers Using Solvents : Remaking plastics for a circular economy , 2020 .

[94]  Hsin‐Tsung Chen First-Principles Study of CO Adsorption and Oxidation on Ru-Doped CeO 2 ( 111 ) Surface , 2012 .

[95]  R. Fréty,et al.  Reduction of cerias with different textures by hydrogen and their reoxidation by oxygen , 1994 .

[96]  K. Domen,et al.  Carbon monoxide and carbon dioxide adsorption on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 1.—Formation of carbonate species on dehydroxylated CeO2, at room temperature , 1989 .

[97]  F. Garin,et al.  Chapter 5 Hydrogenolysis of C-C Bonds on Platinum-Based Bimetallic Catalysts , 1986 .

[98]  W. A. Miller,et al.  Surface free energies of solid metals: Estimation from liquid surface tension measurements , 1977 .